PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): i10.
Published online 2010 January 23. doi:  10.1107/S1600536810000929
PMCID: PMC2979688

Monolanthanum tripotassium tetra­hydrogen deca­molybdodicobaltate(III) trideca­hydrate

Abstract

The title compound, K3La[H4Mo10Co2O38].13H2O, is an optically active chiral polyoxometalate (POM) which contains an anion with ideal point symmetry D2 (222). The crystals containing one of the enanti­omer pairs in the POM were resolved at pH 2.5. The factor that governs the formation of the compound is the pH condition of the mother liquor. The racemate salt, K6[H4Mo10Co2O38]·7H2O, is obtained at pH 6.5 [Nolan et al. (1998 [triangle]). Aust. J. Chem. 51. 825–834]. Two non-acidic H atoms in the POM form intra­molecular hydrogen bonds and the remaining two H atoms form hydrogen bonds with two water mol­ecules. The POMs are connected by three K+ ions. The La3+ ion is coordinated by three O atoms of the POM and six water molecues with distances in the range 2.516 (5)–2.589 (5) Å.

Related literature

For the crystal structures of [H4Mo10Co2O38]6−, see: Evans & Showell (1969 [triangle]); Nolan et al. (1998 [triangle]). For the optical resolution, see: Ama et al. (1970 [triangle]). For a review of chirality in POM chemistry, see: Hasenknopf et al. (2008 [triangle]). For bond-valence sum calculations, see: Brown & Altermatt (1985 [triangle]); Brese & O’Keeffe (1991 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-00i10-scheme1.jpg

Experimental

Crystal data

  • K3La[H4Mo10Co2O38]·13H2O
  • M r = 2179.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-00i10-efi1.jpg
  • a = 10.4487 (6) Å
  • b = 18.598 (1) Å
  • c = 12.3179 (8) Å
  • β = 112.957 (4)°
  • V = 2204.1 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 4.83 mm−1
  • T = 298 K
  • 0.28 × 0.24 × 0.20 mm

Data collection

  • Stoe STADI-4 diffractometer
  • Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1996 [triangle]) T min = 0.349, T max = 0.527
  • 10417 measured reflections
  • 10104 independent reflections
  • 9949 reflections with I > 2σ(I)
  • R int = 0.016
  • 3 standard reflections every 60 min intensity decay: 2.3%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.025
  • wR(F 2) = 0.069
  • S = 1.10
  • 10104 reflections
  • 630 parameters
  • 22 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.37 e Å−3
  • Δρmin = −1.27 e Å−3
  • Absolute structure: Flack (1983 [triangle])
  • Flack parameter: 0.001 (10)

Data collection: STADI-4 (Stoe & Cie, 1996 [triangle]); cell refinement: X-RED (Stoe & Cie, 1996 [triangle]); data reduction: X-RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810000929/br2132sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810000929/br2132Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Pukyong National University Research Abroad Fund in 2006 (grant No. PS-2006-013).

supplementary crystallographic information

Comment

The ammonium salt of [H4Mo10Co2O38]6- heteropolyoxometalte has been briefly reported as a typical chiral polyoxometalate (POM) (Evans et al. 1969) and the crystal strucure of potassium salt, K6[H4Mo10Co2O38].7H2O was reported in detail by P21/c space group (Nolan et al. 1998). The study of optical resolution of this POM was carrried out by using [Co(en)3]3+ (Ama et al. 1970). One of the enantiomer pair salts was obtained as crystals. But the crystal structral study of this salt was not carried out. Recently, the micro review of chirality in POM chemistry has been reported (Hasenknopf et al. 2008). Somtimes, the lanthanide cation, having a very large oxide affinity and stability at low pH range, is useful in isolating POMs because the lanthanide forms a very stable salt with POMs.

The title compound was obtained as a lantahanide-alkali metal double salt in the monoclinic system in chiral space group P21. Here we report the enantimorphous structure of [H4Mo10Co2O38]6- heteropolyoxometalate. The structure of the [H4Mo10Co2O38]6- POM (Fig. 1) has been discussed in detail (Nolan et al., 1998). The O atoms are classified in the Fig. 1, viz., Ot (O16-O24, O29-O38; terminal Mo═O atom), Ob (O11-O14, O25-O28; O bridged µ2-O atom), Oc (O7-O10; µ3-O atom of a Co and two Mo atoms), Od (O1, O2, O5, O6; µ4-O atom of a Co and three Mo atoms), and Oq (O3, O4; µ4-O atom of two Co and two Mo atoms). Fig. 2 shows the two enantiomers.

The four protonated O atoms, Oc(H) in the POM, were identified (Nolan et al., 1998) by calculation of bond-valence sums (BVS; Brown & Altermatt, 1985; Brese & O'Keeffe, 1991). The positions of four non-acidic H atoms on Oc atoms were found on difference Fourier map in this report. These H atoms formed hydrogen bond intramoleculely and with water molecules (Table. 1). All the water molecules formed hydrogen bonds with O atoms in the polyanions, and there are also Ow–H···Ow hydrogen-bond interactions except zeolitic O13w molecule. K+ ions are coordinated by eight O atoms, viz. [K1(Ot)7(Ow)]+, [K2(Ot)3(Ow)4]+, and [K3(Ot)3(Ob)2(Ow)3]+ in the range 2.69 (1)-3.276 (6) Å. La3+ ion is coordinated by nine O atoms, viz. [La(Ot)3(Ow)6]3+ in the range 2.516 (5)-2.589 (5) Å.

Experimental

Crystals of the title compound were obtained from the aqueous solution of La(NO3)3.6H2O and K6[H4Co2Mo10O38].7H2O (Nolan et al., 1998) at pH 2.5.

Refinement

Four H atoms of [H4Co2Mo10O38]6- were positioned in a difference Fourier map and their positional parameters refined with a distance restraint [O–H = 0.85 (5) Å] and these H atoms were refined with an isotropic displacement parameter Uiso = 1.2Ueq(O). The all H atoms of the water molecules were refined with an isotropic displacement parameter Uiso = 1.5Ueq(O). The water H atoms in the O1w and O12w were positioned in a difference Fourier map and their positional parameters refined with a distances restraint [O–H = 0.85 (5) Å]. The water H atoms in the O5w were placed in calculated positions. They were included in the refinement of the riding-motion approximation. The water H atoms in the O2w, O3w, O4w, O8w and O11w were geometrically positioned and refined using a riding model, with O–H = 0.96 Å. The H atoms of the other water molecules were placed in a difference Fourier map and their positional parameters refined with a distances restraint [O–H = 0.85 (5) Å]. The reasonable positions of H atoms in O13w molecule could not be obtained by difference Fourier map and riding model because of zeolitic water molecule. The reported Flack parameter [0.001 (10)] was obtained by a TWIN/BASF procedure.

Figures

Fig. 1.
The structure of the [H4Mo10Co2O38]6- POM with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as a small spheres of arbitrary radius.
Fig. 2.
The two enantiomers of the La[Mo10Co2O38]7- POM. The structure described here is (A).

Crystal data

LaK3[H4Mo10Co2O38]·13H2OF(000) = 2052
Mr = 2179.71Dx = 3.284 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71069 Å
Hall symbol: P 2ybCell parameters from 28 reflections
a = 10.4487 (6) Åθ = 19.0–20.9°
b = 18.598 (1) ŵ = 4.83 mm1
c = 12.3179 (8) ÅT = 298 K
β = 112.957 (4)°Polyhedron, blue
V = 2204.1 (2) Å30.28 × 0.24 × 0.20 mm
Z = 2

Data collection

Stoe STADI-4 diffractometer9949 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.016
graphiteθmax = 27.5°, θmin = 1.8°
ω/2θ scansh = −13→13
Absorption correction: numerical (X-SHAPE; Stoe & Cie, 1996)k = −24→24
Tmin = 0.349, Tmax = 0.527l = −15→15
10417 measured reflections3 standard reflections every 60 min
10104 independent reflections intensity decay: 2.3%

Refinement

Refinement on F2Hydrogen site location: difference Fourier map
Least-squares matrix: fullH atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.025w = 1/[σ2(Fo2) + (0.0432P)2 + 5.9397P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.069(Δ/σ)max < 0.001
S = 1.10Δρmax = 1.37 e Å3
10104 reflectionsΔρmin = −1.27 e Å3
630 parametersExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
22 restraintsExtinction coefficient: 0.00255 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack (1983)
Secondary atom site location: difference Fourier mapFlack parameter: 0.001 (10)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
La0.44544 (3)0.446924 (17)0.14123 (3)0.01703 (7)
Mo10.35787 (6)0.30183 (3)0.62418 (4)0.02049 (11)
Mo20.09792 (5)0.18531 (3)0.54287 (4)0.01769 (10)
Mo3−0.02214 (5)0.11683 (3)0.27366 (4)0.01671 (10)
Mo40.42999 (5)0.23358 (2)0.20358 (4)0.01407 (9)
Mo50.51945 (5)0.32853 (3)0.44537 (4)0.01653 (10)
Mo60.13311 (5)0.32304 (2)0.16909 (4)0.01389 (9)
Mo70.05653 (5)0.25070 (3)−0.09176 (4)0.01733 (10)
Mo80.06410 (5)0.07332 (3)−0.11493 (4)0.01639 (10)
Mo90.18216 (5)−0.02480 (3)0.12967 (4)0.01894 (10)
Mo100.30682 (5)0.05651 (2)0.38835 (4)0.01552 (9)
Co10.25776 (8)0.21760 (4)0.36757 (6)0.01310 (14)
Co20.16831 (8)0.15142 (4)0.14734 (6)0.01251 (14)
K10.0300 (2)−0.11545 (10)0.3699 (2)0.0461 (4)
K20.6309 (3)0.28591 (13)0.9870 (2)0.0595 (6)
K30.6994 (3)0.11419 (19)0.4003 (3)0.0811 (8)
O1D0.1934 (4)0.1345 (2)0.4209 (3)0.0144 (7)
O2D0.3143 (4)0.2948 (2)0.2990 (3)0.0152 (8)
O3Q0.3316 (4)0.1562 (2)0.2853 (4)0.0165 (8)
O4Q0.0974 (4)0.2140 (2)0.2295 (3)0.0148 (7)
O5D0.1119 (4)0.0722 (2)0.2175 (3)0.0153 (7)
O6D0.2314 (4)0.2341 (2)0.0927 (3)0.0146 (7)
O7C0.1753 (4)0.2738 (2)0.4538 (3)0.0154 (7)
H70.130 (7)0.305 (4)0.412 (6)0.023*
O8C0.4303 (4)0.2347 (2)0.5049 (3)0.0168 (8)
H80.487 (7)0.201 (3)0.512 (7)0.025*
O9C0.0078 (4)0.1540 (2)−0.0016 (4)0.0177 (8)
H9−0.073 (5)0.159 (5)−0.007 (7)0.027*
O10C0.2394 (4)0.0811 (2)0.0682 (4)0.0164 (8)
H100.312 (6)0.091 (4)0.066 (7)0.025*
O11B0.2833 (5)0.2093 (3)0.6447 (4)0.0247 (9)
O12B−0.0505 (4)0.1808 (2)0.3825 (4)0.0202 (8)
O13B0.5637 (4)0.2485 (2)0.3574 (4)0.0177 (8)
O14B0.4073 (5)0.3666 (2)0.5211 (4)0.0217 (8)
O15T0.5119 (5)0.2980 (3)0.7427 (4)0.0347 (11)
O16T0.2563 (6)0.3602 (3)0.6628 (5)0.0337 (11)
O17T0.0054 (6)0.2421 (3)0.5929 (4)0.0316 (11)
O18T0.0785 (6)0.1022 (3)0.5926 (5)0.0320 (11)
O19T−0.0674 (6)0.0388 (3)0.3207 (5)0.0333 (11)
O20T−0.1582 (5)0.1366 (3)0.1435 (4)0.0292 (10)
O21T0.4985 (5)0.1640 (3)0.1549 (4)0.0256 (9)
O22T0.4651 (4)0.3102 (2)0.1398 (4)0.0202 (8)
O23T0.5226 (5)0.3973 (2)0.3514 (4)0.0246 (9)
O24T0.6782 (5)0.3278 (3)0.5558 (4)0.0291 (10)
O25B−0.0026 (4)0.3003 (2)0.0225 (4)0.0191 (8)
O26B0.1374 (4)0.1659 (2)−0.1320 (4)0.0205 (8)
O27B0.0277 (4)0.0062 (2)−0.0117 (4)0.0203 (8)
O28B0.3425 (5)0.0027 (2)0.2733 (4)0.0215 (9)
O29T0.2215 (4)0.3920 (2)0.1336 (4)0.0223 (9)
O30T0.0460 (5)0.3621 (2)0.2463 (4)0.0228 (9)
O31T0.1538 (5)0.3148 (2)−0.1229 (4)0.0260 (9)
O32T−0.1007 (5)0.2530 (3)−0.2044 (4)0.0298 (10)
O33T−0.0996 (5)0.0761 (3)−0.2239 (4)0.0278 (10)
O34T0.1615 (5)0.0218 (3)−0.1690 (4)0.0258 (9)
O35T0.2728 (6)−0.0787 (3)0.0729 (5)0.0336 (11)
O36T0.0954 (6)−0.0806 (3)0.1858 (5)0.0334 (11)
O37T0.4685 (5)0.0749 (3)0.4933 (4)0.0279 (10)
O38T0.2395 (5)−0.0078 (3)0.4493 (4)0.0264 (9)
O1W0.3980 (6)0.3956 (3)−0.0655 (4)0.0354 (12)
H1A0.429 (11)0.419 (5)−0.117 (8)0.053*
H1B0.327 (9)0.373 (5)−0.060 (9)0.053*
O2W0.5027 (5)0.5444 (3)0.0224 (4)0.0336 (11)
H2A0.53420.59390.04740.050*
H2B0.45430.5348−0.06030.050*
O3W0.6426 (6)0.5253 (3)0.2868 (5)0.0436 (14)
H3A0.71890.49490.33270.065*
H3B0.67340.55930.24350.065*
O4W0.2314 (5)0.5129 (3)0.0086 (5)0.0403 (13)
H4A0.25810.5535−0.02600.060*
H4B0.18040.52930.05400.060*
O5W0.6810 (5)0.3994 (3)0.1512 (5)0.0337 (11)
H5A0.73590.38220.23010.051*
H5B0.73210.43760.13250.051*
O6W0.3676 (6)0.5322 (4)0.2677 (5)0.0470 (16)
H6A0.41850.55050.32360.071*
H6B0.29060.53180.25510.071*
O7W0.0072 (8)−0.0501 (4)0.5720 (7)0.067 (2)
H7A0.0214−0.04560.65230.101*
H7B0.0600−0.01880.56800.101*
O8W0.7068 (8)0.1744 (5)0.8755 (8)0.069 (2)
H8A0.75370.19370.82880.104*
H8B0.62510.14890.82550.104*
O9W0.7144 (9)0.1721 (4)0.6059 (9)0.115 (5)
H9A0.72670.22180.61690.172*
H9B0.76250.15030.66390.172*
O10W0.7381 (9)−0.0065 (4)0.5288 (12)0.110 (5)
H10A0.8166−0.00320.54390.165*
H10B0.71270.00260.57590.165*
O11W0.4099 (6)0.1777 (3)0.8878 (5)0.0381 (12)
H11A0.33060.19150.90410.057*
H11C0.38380.17480.80410.057*
O12W0.5854 (7)−0.0010 (4)0.2258 (6)0.0480 (15)
H12A0.515 (7)−0.010 (7)0.246 (10)0.072*
H12B0.650 (8)−0.027 (6)0.290 (8)0.072*
O13W0.8073 (8)0.3096 (4)0.3319 (9)0.077 (3)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
La0.01867 (15)0.01501 (14)0.01674 (15)−0.00193 (12)0.00619 (11)0.00159 (11)
Mo10.0262 (3)0.0214 (2)0.0125 (2)−0.00452 (19)0.00618 (19)−0.00344 (18)
Mo20.0230 (2)0.0174 (2)0.0143 (2)−0.00067 (18)0.00903 (18)0.00012 (17)
Mo30.0166 (2)0.0177 (2)0.0167 (2)−0.00258 (17)0.00736 (18)−0.00267 (17)
Mo40.0144 (2)0.0130 (2)0.0148 (2)−0.00060 (16)0.00567 (16)0.00003 (16)
Mo50.0182 (2)0.0155 (2)0.0132 (2)−0.00354 (17)0.00326 (17)0.00012 (17)
Mo60.0151 (2)0.0118 (2)0.0142 (2)0.00074 (16)0.00515 (16)0.00089 (16)
Mo70.0207 (2)0.0162 (2)0.0136 (2)0.00059 (17)0.00507 (17)0.00143 (17)
Mo80.0162 (2)0.0170 (2)0.0149 (2)0.00093 (17)0.00489 (17)−0.00296 (17)
Mo90.0241 (2)0.0126 (2)0.0193 (2)−0.00084 (18)0.00764 (19)−0.00130 (17)
Mo100.0178 (2)0.0132 (2)0.0144 (2)0.00079 (17)0.00502 (16)0.00198 (16)
Co10.0160 (3)0.0119 (3)0.0106 (3)−0.0016 (3)0.0043 (3)−0.0003 (2)
Co20.0148 (3)0.0104 (3)0.0115 (3)−0.0005 (2)0.0043 (3)−0.0003 (2)
K10.0452 (10)0.0339 (9)0.0664 (12)−0.0074 (7)0.0297 (9)0.0064 (8)
K20.0837 (16)0.0500 (12)0.0427 (11)−0.0020 (11)0.0224 (11)−0.0147 (9)
K30.0781 (18)0.0793 (19)0.087 (2)0.0011 (15)0.0335 (16)−0.0015 (16)
O1D0.022 (2)0.0108 (17)0.0138 (17)−0.0020 (14)0.0103 (15)−0.0014 (14)
O2D0.0138 (18)0.0146 (18)0.0137 (18)−0.0019 (14)0.0015 (15)0.0010 (14)
O3Q0.021 (2)0.0143 (18)0.0153 (18)0.0000 (15)0.0076 (16)0.0013 (14)
O4Q0.0154 (18)0.0138 (18)0.0129 (17)−0.0014 (14)0.0033 (14)0.0004 (14)
O5D0.0175 (18)0.0121 (18)0.0160 (18)−0.0011 (14)0.0063 (15)0.0002 (14)
O6D0.0160 (17)0.0128 (17)0.0127 (17)−0.0025 (15)0.0031 (14)0.0015 (14)
O7C0.021 (2)0.0117 (17)0.0128 (18)−0.0010 (15)0.0053 (15)−0.0004 (14)
O8C0.0208 (19)0.0126 (18)0.0155 (18)0.0023 (15)0.0053 (15)0.0035 (14)
O9C0.0156 (18)0.019 (2)0.0180 (19)−0.0010 (16)0.0059 (16)−0.0024 (15)
O10C0.0157 (18)0.0152 (18)0.0175 (19)−0.0008 (15)0.0056 (15)−0.0008 (15)
O11B0.027 (2)0.027 (2)0.019 (2)−0.0025 (18)0.0072 (18)0.0035 (17)
O12B0.021 (2)0.021 (2)0.019 (2)0.0033 (16)0.0083 (16)−0.0012 (16)
O13B0.0154 (18)0.018 (2)0.0174 (19)−0.0010 (15)0.0043 (15)−0.0003 (15)
O14B0.033 (2)0.0134 (18)0.022 (2)−0.0033 (17)0.0131 (18)−0.0028 (16)
O15T0.036 (3)0.043 (3)0.020 (2)−0.010 (2)0.006 (2)−0.006 (2)
O16T0.042 (3)0.033 (3)0.031 (2)−0.001 (2)0.020 (2)−0.006 (2)
O17T0.043 (3)0.029 (3)0.029 (2)0.005 (2)0.020 (2)−0.005 (2)
O18T0.041 (3)0.027 (2)0.031 (2)−0.005 (2)0.017 (2)0.004 (2)
O19T0.040 (3)0.025 (2)0.041 (3)−0.004 (2)0.022 (2)0.001 (2)
O20T0.019 (2)0.039 (3)0.026 (2)0.0009 (18)0.0043 (18)−0.005 (2)
O21T0.029 (2)0.021 (2)0.029 (2)−0.0005 (18)0.0133 (19)−0.0043 (17)
O22T0.022 (2)0.020 (2)0.021 (2)−0.0010 (16)0.0103 (17)0.0050 (16)
O23T0.028 (2)0.021 (2)0.021 (2)−0.0080 (18)0.0054 (18)−0.0030 (17)
O24T0.027 (2)0.026 (2)0.027 (2)−0.0026 (19)0.0034 (19)0.0036 (19)
O25B0.0191 (19)0.0190 (19)0.0174 (19)0.0049 (16)0.0052 (16)0.0001 (16)
O26B0.023 (2)0.022 (2)0.019 (2)0.0008 (17)0.0111 (17)0.0024 (16)
O27B0.020 (2)0.020 (2)0.020 (2)−0.0043 (16)0.0071 (16)−0.0037 (16)
O28B0.022 (2)0.018 (2)0.021 (2)0.0026 (16)0.0056 (17)0.0000 (16)
O29T0.020 (2)0.020 (2)0.024 (2)0.0011 (16)0.0055 (17)0.0069 (17)
O30T0.029 (2)0.018 (2)0.023 (2)0.0017 (17)0.0121 (18)−0.0042 (17)
O31T0.031 (2)0.020 (2)0.030 (2)−0.0030 (18)0.0149 (19)0.0047 (18)
O32T0.030 (2)0.030 (2)0.021 (2)0.005 (2)0.0013 (18)0.0008 (19)
O33T0.025 (2)0.030 (2)0.025 (2)0.0004 (19)0.0060 (18)−0.0020 (19)
O34T0.033 (2)0.023 (2)0.025 (2)0.0072 (19)0.0155 (19)−0.0044 (18)
O35T0.043 (3)0.027 (2)0.031 (3)0.009 (2)0.016 (2)−0.005 (2)
O36T0.043 (3)0.022 (2)0.033 (3)−0.007 (2)0.013 (2)0.000 (2)
O37T0.026 (2)0.030 (2)0.022 (2)0.0021 (19)0.0039 (18)0.0057 (18)
O38T0.033 (2)0.020 (2)0.028 (2)0.0039 (18)0.014 (2)0.0063 (18)
O1W0.049 (3)0.036 (3)0.020 (2)−0.013 (2)0.012 (2)−0.003 (2)
O2W0.033 (3)0.035 (3)0.029 (2)−0.011 (2)0.008 (2)0.006 (2)
O3W0.042 (3)0.053 (4)0.034 (3)−0.025 (3)0.014 (2)−0.016 (3)
O4W0.024 (2)0.046 (3)0.047 (3)0.006 (2)0.010 (2)0.027 (3)
O5W0.030 (2)0.033 (3)0.042 (3)−0.008 (2)0.017 (2)0.003 (2)
O6W0.028 (3)0.061 (4)0.042 (3)0.008 (3)0.003 (2)−0.025 (3)
O7W0.080 (5)0.054 (4)0.056 (4)−0.028 (4)0.013 (4)0.006 (4)
O8W0.062 (5)0.072 (5)0.089 (6)0.009 (4)0.045 (4)0.015 (5)
O9W0.086 (6)0.044 (4)0.118 (8)−0.021 (4)−0.064 (6)0.034 (5)
O10W0.055 (5)0.031 (4)0.231 (14)−0.005 (3)0.040 (7)−0.025 (6)
O11W0.040 (3)0.046 (3)0.033 (3)0.009 (2)0.019 (2)0.012 (2)
O12W0.038 (3)0.052 (4)0.054 (4)−0.001 (3)0.018 (3)−0.015 (3)
O13W0.050 (4)0.061 (5)0.128 (7)0.027 (4)0.045 (5)0.050 (5)

Geometric parameters (Å, °)

Mo1—Mo53.2938 (7)Mo6—O30T1.714 (4)
Mo1—Mo23.3098 (7)Mo6—O29T1.734 (4)
Mo1—Co13.3106 (9)Mo6—O25B1.858 (4)
Mo2—Co13.2599 (9)Mo6—O2D2.014 (4)
Mo2—Mo33.3086 (7)Mo6—O4Q2.240 (4)
Mo3—Co23.0348 (9)Mo6—O6D2.330 (4)
Mo3—Co13.2809 (9)Mo7—O32T1.688 (5)
Mo3—Mo103.3586 (7)Mo7—O31T1.705 (4)
Mo3—Mo94.1946 (7)Mo7—O26B1.943 (4)
Mo4—O21T1.697 (5)Mo7—O25B1.973 (4)
Mo4—O22T1.734 (4)Mo7—O9C2.273 (4)
Mo4—O13B1.885 (4)Mo7—O6D2.314 (4)
Mo4—O6D1.991 (4)Mo8—O34T1.710 (4)
Mo4—O3Q2.224 (4)Mo8—O33T1.714 (5)
Mo4—O2D2.290 (4)Mo8—O27B1.922 (4)
Mo4—Co22.9687 (9)Mo8—O26B1.928 (4)
Mo4—Co13.2004 (9)Mo8—O9C2.278 (4)
Mo4—Mo63.3975 (7)Mo8—O10C2.290 (4)
Mo5—Co13.2569 (9)Mo9—O36T1.693 (5)
Mo5—Mo64.1438 (7)Mo9—O35T1.705 (5)
Mo5—Co25.2232 (9)Mo9—O27B1.944 (4)
Mo6—Co13.0057 (8)Mo9—O28B1.972 (4)
Mo6—Co23.2359 (9)Mo9—O10C2.271 (4)
Mo6—Mo73.2816 (7)Mo9—O5D2.363 (4)
Mo7—Co23.2810 (9)Mo10—O38T1.704 (5)
Mo8—Co23.3148 (8)Mo10—O37T1.714 (5)
Mo8—Mo93.3213 (7)Mo10—O28B1.887 (4)
Mo9—Co23.2915 (9)Mo10—O1D2.009 (4)
Mo9—Mo103.3014 (7)Mo10—O5D2.306 (4)
Mo10—Co13.0334 (9)Mo10—O3Q2.318 (4)
Mo10—Co23.2667 (9)Co1—O4Q1.866 (4)
Co1—Co22.7874 (10)Co1—O2D1.874 (4)
La—O4W2.516 (5)Co1—O3Q1.880 (4)
La—O29T2.521 (4)Co1—O1D1.902 (4)
La—O2W2.543 (5)Co1—O7C1.918 (4)
La—O22T2.552 (4)Co1—O8C1.958 (4)
La—O23T2.564 (5)Co2—O4Q1.874 (4)
La—O6W2.567 (5)Co2—O3Q1.883 (4)
La—O5W2.572 (5)Co2—O6D1.897 (4)
La—O1W2.579 (5)Co2—O5D1.913 (4)
La—O3W2.589 (5)Co2—O10C1.944 (4)
Mo1—O15T1.702 (5)Co2—O9C1.944 (4)
Mo1—O16T1.711 (5)K1—O36T2.690 (6)
Mo1—O11B1.946 (5)K1—O17Ti2.739 (5)
Mo1—O14B1.960 (4)K1—O38T2.843 (5)
Mo1—O8C2.271 (4)K1—O7W2.863 (9)
Mo1—O7C2.279 (4)K1—O16Ti2.894 (6)
Mo2—O17T1.701 (5)K1—O24Tii3.011 (5)
Mo2—O18T1.704 (5)K1—O19T3.025 (6)
Mo2—O11B1.905 (5)K1—O31Tiii3.174 (5)
Mo2—O12B1.981 (4)K2—O8W2.770 (9)
Mo2—O7C2.293 (4)K2—O15T2.781 (5)
Mo2—O1D2.306 (4)K2—O5Wiv2.827 (6)
Mo3—O19T1.697 (5)K2—O35Tv2.912 (5)
Mo3—O20T1.717 (5)K2—O11W2.945 (7)
Mo3—O12B1.900 (4)K2—O1Wiv3.046 (7)
Mo3—O5D1.971 (4)K2—O22Tiv3.048 (5)
Mo3—O1D2.299 (4)K3—O10W2.685 (12)
Mo3—O4Q2.378 (4)K3—O9W2.700 (13)
Mo5—O24T1.686 (5)K3—O13B2.819 (5)
Mo5—O23T1.734 (5)K3—O12W2.939 (7)
Mo5—O14B1.898 (4)K3—O12Bvi2.977 (5)
Mo5—O13B1.998 (4)K3—O21T3.075 (6)
Mo5—O8C2.232 (4)K3—O37T3.134 (6)
Mo5—O2D2.286 (4)K3—O19Tvi3.276 (6)
Co2—Mo3—Mo951.149 (17)O34T—Mo8—O26B97.8 (2)
Co1—Mo3—Mo988.689 (18)O33T—Mo8—O26B101.8 (2)
Mo2—Mo3—Mo9127.515 (17)O27B—Mo8—O26B147.24 (18)
Mo10—Mo3—Mo950.358 (13)O34T—Mo8—O9C160.5 (2)
Co2—Mo4—Mo660.658 (18)O33T—Mo8—O9C92.4 (2)
Co1—Mo4—Mo654.102 (17)O27B—Mo8—O9C81.79 (17)
Co1—Mo5—Mo646.018 (15)O26B—Mo8—O9C71.78 (17)
Mo1—Mo5—Mo687.491 (16)O34T—Mo8—O10C92.88 (19)
Co1—Mo6—Mo7113.07 (2)O33T—Mo8—O10C160.05 (19)
Co2—Mo6—Mo760.447 (17)O27B—Mo8—O10C71.20 (16)
Co1—Mo6—Mo551.231 (17)O26B—Mo8—O10C81.51 (16)
Co2—Mo6—Mo589.230 (18)O9C—Mo8—O10C69.71 (15)
Mo7—Mo6—Mo5126.989 (17)O36T—Mo9—O35T106.2 (3)
Mo4—Mo6—Mo550.202 (12)O36T—Mo9—O27B99.1 (2)
Co2—Mo8—Mo959.471 (17)O35T—Mo9—O27B101.9 (2)
Co2—Mo9—Mo860.167 (17)O36T—Mo9—O28B101.3 (2)
Mo10—Mo9—Mo8119.405 (19)O35T—Mo9—O28B96.2 (2)
Co2—Mo9—Mo345.892 (16)O27B—Mo9—O28B147.68 (18)
Mo10—Mo9—Mo351.573 (13)O36T—Mo9—O10C156.9 (2)
Mo8—Mo9—Mo388.185 (16)O35T—Mo9—O10C96.4 (2)
Co1—Mo10—Mo361.518 (18)O27B—Mo9—O10C71.25 (16)
Co2—Mo10—Mo354.502 (17)O28B—Mo9—O10C80.34 (17)
Mo9—Mo10—Mo378.068 (16)O36T—Mo9—O5D88.2 (2)
Mo6—Co1—Mo10135.92 (3)O35T—Mo9—O5D163.3 (2)
Co2—Co1—Mo5119.37 (3)O27B—Mo9—O5D83.44 (16)
Mo6—Co1—Mo582.75 (2)O28B—Mo9—O5D72.42 (16)
Mo10—Co1—Mo5120.40 (3)O10C—Mo9—O5D70.10 (14)
Mo4—Co1—Mo560.838 (18)O38T—Mo10—O37T105.2 (2)
Co2—Co1—Mo2119.96 (3)O38T—Mo10—O28B101.3 (2)
Mo6—Co1—Mo2119.18 (3)O37T—Mo10—O28B104.3 (2)
Mo10—Co1—Mo282.85 (2)O38T—Mo10—O1D92.40 (19)
Mo4—Co1—Mo2174.10 (3)O37T—Mo10—O1D101.0 (2)
Mo5—Co1—Mo2120.67 (2)O28B—Mo10—O1D146.84 (17)
Co1—Co2—Mo368.45 (2)O38T—Mo10—O5D97.01 (19)
Mo4—Co2—Mo3135.88 (3)O37T—Mo10—O5D157.32 (19)
Co1—Co2—Mo659.31 (2)O28B—Mo10—O5D75.21 (16)
Mo4—Co2—Mo666.238 (19)O1D—Mo10—O5D73.20 (15)
Mo3—Co2—Mo692.76 (2)O38T—Mo10—O3Q163.06 (19)
Co1—Co2—Mo1059.51 (2)O37T—Mo10—O3Q88.05 (19)
Mo4—Co2—Mo1091.42 (2)O28B—Mo10—O3Q85.20 (17)
Mo3—Co2—Mo1064.292 (19)O1D—Mo10—O3Q74.46 (15)
Mo6—Co2—Mo10118.82 (2)O5D—Mo10—O3Q69.28 (14)
Co1—Co2—Mo7119.47 (3)O4Q—Co1—O2D86.85 (17)
Mo4—Co2—Mo783.84 (2)O4Q—Co1—O3Q84.16 (17)
Mo3—Co2—Mo7120.30 (3)O2D—Co1—O3Q87.36 (18)
Mo6—Co2—Mo760.465 (17)O4Q—Co1—O1D88.47 (18)
Mo10—Co2—Mo7175.05 (3)O2D—Co1—O1D173.81 (17)
O4W—La—O29T66.17 (15)O3Q—Co1—O1D88.13 (17)
O4W—La—O2W68.13 (17)O4Q—Co1—O7C94.97 (18)
O29T—La—O2W133.65 (15)O2D—Co1—O7C96.95 (17)
O4W—La—O22T122.37 (17)O3Q—Co1—O7C175.56 (18)
O29T—La—O22T70.86 (14)O1D—Co1—O7C87.49 (17)
O2W—La—O22T131.96 (16)O4Q—Co1—O8C171.94 (17)
O4W—La—O23T132.93 (17)O2D—Co1—O8C85.36 (16)
O29T—La—O23T79.26 (14)O3Q—Co1—O8C97.53 (18)
O2W—La—O23T141.80 (15)O1D—Co1—O8C99.44 (17)
O22T—La—O23T69.73 (14)O7C—Co1—O8C83.94 (17)
O4W—La—O6W71.4 (2)O4Q—Co2—O3Q83.85 (17)
O29T—La—O6W76.34 (18)O4Q—Co2—O6D87.29 (17)
O2W—La—O6W96.3 (2)O3Q—Co2—O6D87.93 (17)
O22T—La—O6W131.68 (19)O4Q—Co2—O5D88.76 (17)
O23T—La—O6W70.06 (18)O3Q—Co2—O5D87.67 (17)
O4W—La—O5W142.23 (18)O6D—Co2—O5D174.38 (17)
O29T—La—O5W136.00 (15)O4Q—Co2—O10C176.06 (18)
O2W—La—O5W80.62 (17)O3Q—Co2—O10C95.49 (18)
O22T—La—O5W65.16 (15)O6D—Co2—O10C96.57 (17)
O23T—La—O5W84.83 (16)O5D—Co2—O10C87.33 (17)
O6W—La—O5W134.97 (17)O4Q—Co2—O9C96.70 (17)
O4W—La—O1W76.1 (2)O3Q—Co2—O9C174.21 (19)
O29T—La—O1W89.71 (17)O6D—Co2—O9C86.34 (17)
O2W—La—O1W72.13 (18)O5D—Co2—O9C98.10 (18)
O22T—La—O1W67.04 (16)O10C—Co2—O9C84.35 (17)
O23T—La—O1W136.64 (16)O36T—K1—O38T72.89 (15)
O6W—La—O1W147.46 (19)O36T—K1—O7W139.94 (19)
O5W—La—O1W74.47 (19)O38T—K1—O7W73.50 (18)
O4W—La—O3W116.2 (2)O36T—K1—O19T77.21 (16)
O29T—La—O3W136.91 (17)O38T—K1—O19T63.57 (14)
O2W—La—O3W72.26 (18)O7W—K1—O19T68.66 (19)
O22T—La—O3W121.42 (18)O8W—K2—O15T67.5 (2)
O23T—La—O3W69.62 (17)O8W—K2—O11W67.2 (2)
O6W—La—O3W65.58 (19)O15T—K2—O11W70.08 (16)
O5W—La—O3W70.87 (19)O10W—K3—O9W80.8 (3)
O1W—La—O3W133.36 (18)O10W—K3—O13B143.2 (3)
O15T—Mo1—O16T105.6 (3)O9W—K3—O13B70.32 (19)
O15T—Mo1—O11B98.3 (2)O10W—K3—O12W75.3 (3)
O16T—Mo1—O11B101.7 (2)O9W—K3—O12W146.7 (3)
O15T—Mo1—O14B100.4 (2)O13B—K3—O12W118.57 (19)
O16T—Mo1—O14B98.0 (2)O10W—K3—O21T136.0 (3)
O11B—Mo1—O14B148.00 (18)O9W—K3—O21T124.7 (2)
O15T—Mo1—O8C95.2 (2)O13B—K3—O21T56.49 (13)
O16T—Mo1—O8C158.2 (2)O12W—K3—O21T64.78 (18)
O11B—Mo1—O8C81.34 (18)O10W—K3—O37T63.2 (2)
O14B—Mo1—O8C71.38 (16)O9W—K3—O37T61.4 (2)
O15T—Mo1—O7C162.4 (2)O13B—K3—O37T82.69 (15)
O16T—Mo1—O7C90.8 (2)O12W—K3—O37T86.96 (18)
O11B—Mo1—O7C71.57 (17)Co1—O1D—Mo10101.68 (17)
O14B—Mo1—O7C83.18 (16)Co1—O1D—Mo3102.32 (17)
O8C—Mo1—O7C69.45 (14)Mo10—O1D—Mo3102.24 (16)
O17T—Mo2—O18T105.6 (3)Co1—O1D—Mo2101.13 (16)
O17T—Mo2—O11B101.0 (2)Mo10—O1D—Mo2149.8 (2)
O18T—Mo2—O11B102.1 (2)Mo3—O1D—Mo291.87 (14)
O17T—Mo2—O12B93.1 (2)Co1—O2D—Mo6101.18 (17)
O18T—Mo2—O12B99.4 (2)Co1—O2D—Mo5102.60 (16)
O11B—Mo2—O12B149.98 (18)Mo6—O2D—Mo5148.9 (2)
O17T—Mo2—O7C94.8 (2)Co1—O2D—Mo499.97 (17)
O18T—Mo2—O7C159.6 (2)Mo6—O2D—Mo4104.06 (16)
O11B—Mo2—O7C71.90 (17)Mo5—O2D—Mo491.22 (14)
O12B—Mo2—O7C80.67 (16)Co1—O3Q—Co295.60 (18)
O17T—Mo2—O1D160.4 (2)Co1—O3Q—Mo4102.17 (18)
O18T—Mo2—O1D90.3 (2)Co2—O3Q—Mo492.20 (16)
O11B—Mo2—O1D86.44 (18)Co1—O3Q—Mo1091.93 (16)
O12B—Mo2—O1D72.67 (16)Co2—O3Q—Mo10101.58 (18)
O7C—Mo2—O1D70.10 (14)Mo4—O3Q—Mo10159.3 (2)
O19T—Mo3—O20T105.2 (3)Co1—O4Q—Co296.37 (18)
O19T—Mo3—O12B98.9 (2)Co1—O4Q—Mo693.67 (16)
O20T—Mo3—O12B103.0 (2)Co2—O4Q—Mo6103.37 (18)
O19T—Mo3—O5D95.2 (2)Co1—O4Q—Mo3100.57 (17)
O20T—Mo3—O5D101.8 (2)Co2—O4Q—Mo390.27 (15)
O12B—Mo3—O5D147.02 (18)Mo6—O4Q—Mo3159.10 (19)
O19T—Mo3—O1D99.8 (2)Co2—O5D—Mo3102.77 (18)
O20T—Mo3—O1D154.9 (2)Co2—O5D—Mo10101.07 (17)
O12B—Mo3—O1D74.24 (16)Mo3—O5D—Mo10103.20 (17)
O5D—Mo3—O1D74.05 (15)Co2—O5D—Mo9100.13 (17)
O19T—Mo3—O4Q165.8 (2)Mo3—O5D—Mo9150.7 (2)
O20T—Mo3—O4Q86.6 (2)Mo10—O5D—Mo989.97 (14)
O12B—Mo3—O4Q85.74 (16)Co2—O6D—Mo499.54 (17)
O5D—Mo3—O4Q74.38 (15)Co2—O6D—Mo7101.89 (16)
O1D—Mo3—O4Q68.36 (13)Mo4—O6D—Mo7152.5 (2)
O21T—Mo4—O22T105.9 (2)Co2—O6D—Mo699.41 (17)
O21T—Mo4—O13B102.6 (2)Mo4—O6D—Mo6103.42 (16)
O22T—Mo4—O13B97.43 (19)Mo7—O6D—Mo689.92 (14)
O21T—Mo4—O6D103.4 (2)Co1—O7C—Mo1103.82 (18)
O22T—Mo4—O6D91.90 (18)Co1—O7C—Mo2101.06 (17)
O13B—Mo4—O6D148.71 (17)Mo1—O7C—Mo292.75 (14)
O21T—Mo4—O3Q90.01 (19)Co1—O7C—H7109 (6)
O22T—Mo4—O3Q162.41 (17)Mo1—O7C—H7120 (6)
O13B—Mo4—O3Q86.14 (16)Mo2—O7C—H7126 (6)
O6D—Mo4—O3Q76.79 (15)Co1—O8C—Mo5101.83 (17)
O21T—Mo4—O2D160.03 (19)Co1—O8C—Mo1102.79 (18)
O22T—Mo4—O2D94.07 (17)Mo5—O8C—Mo194.00 (15)
O13B—Mo4—O2D75.14 (16)Co1—O8C—H8110 (6)
O6D—Mo4—O2D74.45 (15)Mo5—O8C—H8105 (6)
O3Q—Mo4—O2D70.10 (15)Mo1—O8C—H8137 (6)
O24T—Mo5—O23T106.0 (2)Co2—O9C—Mo7101.86 (18)
O24T—Mo5—O14B102.0 (2)Co2—O9C—Mo8103.17 (18)
O23T—Mo5—O14B103.2 (2)Mo7—O9C—Mo893.49 (16)
O24T—Mo5—O13B94.0 (2)Co2—O9C—H9124 (6)
O23T—Mo5—O13B96.80 (19)Mo7—O9C—H9107 (6)
O14B—Mo5—O13B149.63 (17)Mo8—O9C—H9121 (6)
O24T—Mo5—O8C97.73 (19)Co2—O10C—Mo9102.40 (18)
O23T—Mo5—O8C156.16 (18)Co2—O10C—Mo8102.77 (17)
O14B—Mo5—O8C73.36 (16)Mo9—O10C—Mo893.47 (15)
O13B—Mo5—O8C79.06 (16)Co2—O10C—H10114 (6)
O24T—Mo5—O2D163.6 (2)Mo9—O10C—H10127 (6)
O23T—Mo5—O2D86.08 (18)Mo8—O10C—H10113 (6)
O14B—Mo5—O2D85.50 (17)Mo2—O11B—Mo1118.5 (2)
O13B—Mo5—O2D73.24 (15)Mo3—O12B—Mo2117.0 (2)
O8C—Mo5—O2D70.21 (14)Mo4—O13B—Mo5114.7 (2)
O32T—Mo7—O31T105.8 (2)Mo5—O14B—Mo1117.2 (2)
O32T—Mo7—O26B101.1 (2)Mo6—O25B—Mo7117.8 (2)
O31T—Mo7—O26B98.9 (2)Mo8—O26B—Mo7117.8 (2)
O32T—Mo7—O25B95.7 (2)Mo8—O27B—Mo9118.4 (2)
O31T—Mo7—O25B102.3 (2)Mo10—O28B—Mo9117.6 (2)
O26B—Mo7—O25B148.24 (17)H1A—O1W—H1B144 (10)
O32T—Mo7—O9C95.2 (2)H2A—O2W—H2B118.6
O31T—Mo7—O9C158.44 (19)H3A—O3W—H3B109.5
O26B—Mo7—O9C71.65 (17)H4A—O4W—H4B109.5
O25B—Mo7—O9C80.17 (17)H5A—O5W—H5B108.4
O32T—Mo7—O6D162.4 (2)H6A—O6W—H6B119.8
O31T—Mo7—O6D90.14 (19)H7A—O7W—H7B99.6
O26B—Mo7—O6D83.51 (17)H8A—O8W—H8B109.5
O25B—Mo7—O6D73.08 (16)H9A—O9W—H9B111.5
O9C—Mo7—O6D69.90 (14)H10A—O10W—H10B117.6
O34T—Mo8—O33T106.0 (2)H11A—O11W—H11C109.5
O34T—Mo8—O27B101.2 (2)H12A—O12W—H12B94 (6)
O33T—Mo8—O27B98.2 (2)

Symmetry codes: (i) −x, y−1/2, −z+1; (ii) −x+1, y−1/2, −z+1; (iii) −x, y−1/2, −z; (iv) x, y, z+1; (v) −x+1, y+1/2, −z+1; (vi) x+1, y, z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O7C—H7···O30T0.79 (4)2.16 (5)2.891 (6)152 (8)
O8C—H8···O9W0.85 (4)2.26 (6)2.972 (10)141 (7)
O9C—H9···O8Wvii0.82 (4)2.21 (6)2.935 (9)147 (8)
O10C—H10···O21T0.80 (4)2.27 (6)2.932 (6)141 (8)
O1W—H1A···O12Wviii0.92 (7)1.97 (9)2.809 (8)151 (9)
O1W—H1B···O31T0.87 (8)1.99 (8)2.803 (7)154 (10)
O2W—H2A···O11Wv0.991.752.724 (8)171
O2W—H2B···O12Wviii0.962.032.951 (9)161
O3W—H3A···O38Tv0.962.553.055 (8)113
O3W—H3B···O34Tviii0.962.352.936 (7)119
O4W—H4A···O20Tix0.962.102.876 (7)137
O4W—H4B···O27Bix0.962.072.725 (7)124
O5W—H5A···O13W0.971.792.682 (9)151
O5W—H5B···O34Tviii0.971.872.768 (7)153
O6W—H6A···O37Tv0.772.152.880 (7)161
O6W—H6B···O33Tix0.762.052.761 (7)156
O7W—H7A···O30Ti0.942.382.991 (8)122
O7W—H7B···O18T0.822.272.915 (9)136
O8W—H8A···O32Tx0.962.052.950 (9)156
O8W—H8B···O6Wii0.962.473.105 (12)123
O9W—H9A···O24T0.942.102.955 (9)151
O9W—H9A···O32Tx0.942.312.817 (10)113
O9W—H9B···O33Tx0.802.082.861 (9)163
O10W—H10A···O7Wvi0.772.082.771 (12)150
O11W—H11A···O26Biv0.961.952.770 (7)142
O11W—H11C···O11B0.961.942.824 (7)152
O12W—H12A···O28B0.88 (5)1.97 (5)2.819 (8)161 (11)
O12W—H12B···O16Tii0.94 (5)2.30 (9)3.083 (9)140 (10)

Symmetry codes: (vii) x−1, y, z−1; (viii) −x+1, y+1/2, −z; (v) −x+1, y+1/2, −z+1; (ix) −x, y+1/2, −z; (i) −x, y−1/2, −z+1; (x) x+1, y, z+1; (ii) −x+1, y−1/2, −z+1; (vi) x+1, y, z; (iv) x, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BR2132).

References

  • Ama, T., Hidaka, J. & Shimura, Y. (1970). Bull. Chem. Soc. Jpn, 43, 2654.
  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Brese, N. E. & O’Keeffe, M. (1991). Acta Cryst. B47, 192–197.
  • Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244–247.
  • Evans, H. T. Jr & Showell, J. S. (1969). J. Am. Chem. Soc 91 6881–6882.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hasenknopf, B., Micone, K., Lacôte, E., Thorimbert, S., Malacria, M. & Thouvenot, R. (2008). Eur. J. Inorg. Chem pp. 5001–5013.
  • Nolan, A. L., Allen, C. C., Burns, R. C., Craig, D. C. & Lawrance, G. A. (1998). Aust. J. Chem.51 825–834.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stoe & Cie (1996). STADI-4, X-RED and X-SHAPE Stoe & Cie Gmbh, Darmstadt, Germany.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography