PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o374.
Published online 2010 January 16. doi:  10.1107/S1600536810001248
PMCID: PMC2979678

(E)-1-(6-Chloro-2-methyl-4-phenyl-3-quinol­yl)-3-(4-ethoxy­phen­yl)prop-2-en-1-one

Abstract

In the title compound, C27H22ClNO2, the phenyl substituent on the quinoline ring system is almost perpendicular to it [dihedral angle = 88.2 (1)°]. The quinoline ring system and the ethoxy­phenyl ring are oriented at dihedral angles of 79.5 (1) and 17.6 (3)°, respectively, with respect to the almost planar [r.m.s. deviation= 0.037 (3) Å] –C(=O)—C=C– linkage. In the crystal, the inversion-related mol­ecules exist as C—H(...)O hydrogen-bonded R 2 2(8) dimers.

Related literature

For the biological activity of chalcone derivatives, see: Dimmock et al. (1999 [triangle]); Zi & Simoneau (2005 [triangle]); Yamazaki et al. (2002 [triangle]). For a related structure, see: Wu et al. (2006 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o374-scheme1.jpg

Experimental

Crystal data

  • C27H22ClNO2
  • M r = 427.91
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o374-efi1.jpg
  • a = 16.2086 (5) Å
  • b = 13.4760 (4) Å
  • c = 10.5450 (3) Å
  • β = 105.128 (2)°
  • V = 2223.49 (11) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.20 mm−1
  • T = 296 K
  • 0.52 × 0.14 × 0.07 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.905, T max = 0.986
  • 39732 measured reflections
  • 6511 independent reflections
  • 2360 reflections with I > 2σ(I)
  • R int = 0.110

Refinement

  • R[F 2 > 2σ(F 2)] = 0.068
  • wR(F 2) = 0.169
  • S = 1.00
  • 6511 reflections
  • 282 parameters
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.16 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001248/ci5014sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001248/ci5014Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HKF and TSH thank Universiti Sains Malaysia (USM) for the Research University Golden Goose grant No. 1001/PFIZIK/811012. VV is grateful to the DST–India for funding through the Young Scientist Scheme (Fast Track Proposal).

supplementary crystallographic information

Comment

Chalcones are open chain flavonoids possessing a variety of biological activities such as antioxidant, anti-inflammation, antimicrobial, antiprotozoal, antiulcer, as well as other activities (Dimmock et al., 1999). More importantly, chalcones have shown several anticancer activities as inhibitors of cancer cell proliferation, carcinogenesis and metastasis (Zi & Simoneau, 2005; Yamazaki et al., 2002). We report here the crystal structure of the title chalcone derivative.

In the title molecule (Fig. 1), the quinoline ring system (C1/N1/C2–C9) is essentially planar with a maximum deviation of 0.026 (2) Å for atom C2. The C10–C15 and C19–C24 rings form dihedral angles of 88.2 (1)° and 67.8 (1)°, respectively, with the quinoline ring system. The ethoxy group is almost coplanar with the attached ring [C26—O2—C22—C23 = 1.8 (4)° and C22—O2—C26—C27 = -171.7 (3)°]. Bond lengths (Allen et al., 1987) and angles show normal values.

In the crystal packing (Fig. 2), pairs of intermolecular C21—H21A···O2 hydrogen bonds (Table 1) form dimers with neighbouring molecules, generating R22(8) ring motifs (Bernstein et al., 1995). The dimers are stacked down the c axis (Fig. 2).

Experimental

A mixture of 3-acetyl-6-chloro-2-methyl-4-phenylquinoline (2.95 g, 0.01 mmol), 4-ethoxybenzaldehyde (1.50 g, 0.01 mmol) and a catalytic amount of KOH in distilled ethanol was stirred for 12 h. The resulting mixture was concentrated to remove the ethanol and then poured onto ice and neutralized with diluted acetic acid. The resultant solid was filtered, dried and purified by column chromatography using a 1:1 mixture of ethylacetate and petroleum ether (m.p 401–403 K).

Refinement

H atoms were positioned geometrically [C–H = 0.93–0.97 Å] and refined using a riding model, with Uiso(H) = 1.2-1.5Ueq(C). A rotating group model was used for the methyl groups. The ratio of observed to unique reflections is low (36%), and the value of Rint is greater than 0.10, probably due to the poor diffraction quality of the crystal.

Figures

Fig. 1.
The molecular structure of the title compound, showing 30% probability displacement ellipsoids and the atom numbering scheme.
Fig. 2.
Part of the crystal packing of the title compound, viewed along the c axis.

Crystal data

C27H22ClNO2F(000) = 896
Mr = 427.91Dx = 1.278 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2856 reflections
a = 16.2086 (5) Åθ = 2.5–19.7°
b = 13.4760 (4) ŵ = 0.20 mm1
c = 10.5450 (3) ÅT = 296 K
β = 105.128 (2)°Plate, colourless
V = 2223.49 (11) Å30.52 × 0.14 × 0.07 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer6511 independent reflections
Radiation source: fine-focus sealed tube2360 reflections with I > 2σ(I)
graphiteRint = 0.110
[var phi] and ω scansθmax = 30.1°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −22→22
Tmin = 0.905, Tmax = 0.986k = −18→19
39732 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.068Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.169H-atom parameters constrained
S = 1.00w = 1/[σ2(Fo2) + (0.0605P)2] where P = (Fo2 + 2Fc2)/3
6511 reflections(Δ/σ)max = 0.001
282 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = −0.16 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cyrosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl11.16190 (5)0.67801 (6)0.88581 (7)0.0828 (3)
O10.64844 (13)0.61168 (16)0.6171 (2)0.0913 (7)
O20.56628 (11)−0.02725 (14)0.68435 (17)0.0742 (5)
N10.83573 (15)0.60187 (15)1.01410 (19)0.0652 (6)
C10.76675 (18)0.57733 (18)0.9210 (3)0.0636 (7)
C20.91019 (17)0.61647 (17)0.9804 (2)0.0561 (6)
C30.98340 (19)0.64653 (18)1.0782 (2)0.0681 (8)
H3A0.97960.65361.16430.082*
C41.05818 (18)0.66517 (19)1.0508 (2)0.0669 (8)
H4A1.10520.68551.11690.080*
C51.06500 (16)0.65382 (17)0.9211 (2)0.0598 (7)
C60.99656 (16)0.62385 (17)0.8232 (2)0.0571 (7)
H6A1.00230.61570.73830.068*
C70.91777 (16)0.60528 (16)0.8499 (2)0.0516 (6)
C80.84261 (17)0.57688 (16)0.7512 (2)0.0533 (6)
C90.76818 (16)0.56417 (18)0.7873 (2)0.0568 (6)
C100.84861 (15)0.56255 (19)0.6129 (2)0.0535 (6)
C110.83198 (18)0.6399 (2)0.5248 (3)0.0722 (8)
H11A0.81490.70110.54990.087*
C120.8408 (2)0.6264 (3)0.3979 (3)0.0832 (9)
H12A0.82960.67890.33860.100*
C130.86553 (19)0.5372 (3)0.3599 (3)0.0793 (9)
H13A0.87110.52870.27510.095*
C140.88206 (19)0.4605 (2)0.4470 (3)0.0809 (9)
H14A0.89900.39940.42130.097*
C150.87381 (17)0.4728 (2)0.5731 (2)0.0696 (8)
H15A0.88540.42000.63180.084*
C160.68610 (18)0.5431 (2)0.6824 (3)0.0674 (7)
C170.65339 (17)0.4419 (2)0.6605 (3)0.0714 (8)
H17A0.60500.43110.59170.086*
C180.68782 (17)0.3647 (2)0.7317 (3)0.0701 (8)
H18A0.73690.37700.79850.084*
C190.65760 (16)0.2617 (2)0.7177 (3)0.0647 (7)
C200.59824 (17)0.2271 (2)0.6052 (2)0.0719 (8)
H20A0.57830.26960.53440.086*
C210.56885 (17)0.1309 (2)0.5978 (3)0.0703 (8)
H21A0.52910.10920.52240.084*
C220.59809 (16)0.0660 (2)0.7018 (2)0.0630 (7)
C230.65787 (18)0.0995 (2)0.8127 (3)0.0750 (8)
H23A0.67820.05700.88350.090*
C240.68682 (17)0.1947 (2)0.8180 (3)0.0747 (8)
H24A0.72800.21530.89230.090*
C250.68576 (19)0.5650 (2)0.9637 (3)0.0906 (10)
H25A0.68870.60491.04010.136*
H25B0.67900.49650.98420.136*
H25C0.63790.58550.89400.136*
C260.5940 (2)−0.0967 (2)0.7886 (3)0.0938 (10)
H26A0.5725−0.07770.86270.113*
H26B0.6560−0.09770.81710.113*
C270.5619 (2)−0.1949 (3)0.7416 (4)0.1204 (13)
H27A0.5787−0.24200.81190.181*
H27B0.5853−0.21420.67050.181*
H27C0.5007−0.19300.71150.181*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0758 (5)0.1044 (6)0.0655 (5)−0.0208 (4)0.0137 (4)−0.0139 (4)
O10.0965 (16)0.0922 (16)0.0772 (14)0.0004 (12)0.0081 (12)0.0054 (12)
O20.0882 (13)0.0688 (13)0.0590 (11)−0.0121 (10)0.0075 (10)0.0023 (10)
N10.0898 (17)0.0651 (15)0.0463 (12)−0.0059 (12)0.0280 (12)−0.0022 (11)
C10.0804 (19)0.0612 (18)0.0541 (16)−0.0052 (14)0.0260 (15)−0.0026 (13)
C20.0806 (18)0.0504 (15)0.0389 (13)−0.0023 (13)0.0184 (13)−0.0007 (11)
C30.094 (2)0.0725 (19)0.0371 (14)−0.0044 (16)0.0162 (14)−0.0061 (12)
C40.081 (2)0.0707 (19)0.0420 (15)−0.0070 (15)0.0034 (13)−0.0071 (12)
C50.0687 (16)0.0581 (16)0.0504 (15)−0.0073 (13)0.0117 (13)−0.0033 (12)
C60.0786 (18)0.0543 (16)0.0388 (13)−0.0073 (13)0.0163 (13)−0.0064 (11)
C70.0695 (17)0.0473 (14)0.0390 (13)−0.0068 (12)0.0156 (12)−0.0027 (11)
C80.0747 (17)0.0473 (15)0.0399 (13)−0.0062 (12)0.0183 (12)−0.0037 (11)
C90.0734 (17)0.0563 (16)0.0447 (14)−0.0080 (13)0.0225 (13)−0.0049 (12)
C100.0654 (15)0.0565 (16)0.0392 (13)−0.0126 (13)0.0149 (11)−0.0048 (12)
C110.103 (2)0.0622 (18)0.0529 (16)−0.0086 (15)0.0231 (15)0.0024 (14)
C120.114 (3)0.087 (2)0.0502 (17)−0.0144 (19)0.0245 (16)0.0127 (16)
C130.098 (2)0.097 (2)0.0477 (16)−0.0237 (19)0.0279 (15)−0.0128 (17)
C140.110 (2)0.082 (2)0.0560 (17)−0.0013 (18)0.0304 (16)−0.0156 (16)
C150.098 (2)0.0667 (19)0.0445 (15)0.0004 (16)0.0189 (14)−0.0033 (13)
C160.0715 (18)0.079 (2)0.0556 (17)−0.0056 (16)0.0246 (14)−0.0067 (15)
C170.0646 (17)0.086 (2)0.0619 (17)−0.0129 (16)0.0134 (14)−0.0095 (16)
C180.0642 (17)0.087 (2)0.0605 (17)−0.0086 (16)0.0194 (14)−0.0137 (16)
C190.0628 (16)0.074 (2)0.0585 (17)−0.0095 (14)0.0173 (13)−0.0157 (15)
C200.0791 (19)0.077 (2)0.0561 (16)−0.0072 (16)0.0119 (14)−0.0001 (14)
C210.0769 (18)0.075 (2)0.0530 (16)−0.0084 (15)0.0059 (14)−0.0069 (15)
C220.0636 (16)0.073 (2)0.0526 (16)−0.0015 (14)0.0158 (13)−0.0058 (14)
C230.0748 (19)0.088 (2)0.0554 (17)−0.0078 (16)0.0048 (14)0.0013 (15)
C240.0687 (18)0.088 (2)0.0593 (17)−0.0090 (16)0.0017 (14)−0.0070 (17)
C250.097 (2)0.116 (3)0.0730 (19)−0.0114 (19)0.0472 (17)−0.0061 (18)
C260.103 (2)0.094 (3)0.073 (2)−0.0185 (19)0.0026 (18)0.0186 (19)
C270.141 (3)0.099 (3)0.119 (3)−0.012 (2)0.029 (2)0.034 (2)

Geometric parameters (Å, °)

Cl1—C51.737 (3)C13—H13A0.93
O1—C161.217 (3)C14—C151.382 (3)
O2—C221.352 (3)C14—H14A0.93
O2—C261.424 (3)C15—H15A0.93
N1—C11.323 (3)C16—C171.460 (4)
N1—C21.359 (3)C17—C181.319 (4)
C1—C91.427 (3)C17—H17A0.93
C1—C251.504 (4)C18—C191.467 (4)
C2—C31.414 (3)C18—H18A0.93
C2—C71.421 (3)C19—C241.376 (4)
C3—C41.341 (3)C19—C201.398 (3)
C3—H3A0.93C20—C211.376 (4)
C4—C51.408 (3)C20—H20A0.93
C4—H4A0.93C21—C221.386 (3)
C5—C61.365 (3)C21—H21A0.93
C6—C71.400 (3)C22—C231.385 (3)
C6—H6A0.93C23—C241.362 (4)
C7—C81.432 (3)C23—H23A0.93
C8—C91.367 (3)C24—H24A0.93
C8—C101.500 (3)C25—H25A0.96
C9—C161.518 (4)C25—H25B0.96
C10—C111.375 (3)C25—H25C0.96
C10—C151.376 (3)C26—C271.460 (4)
C11—C121.395 (4)C26—H26A0.97
C11—H11A0.93C26—H26B0.97
C12—C131.360 (4)C27—H27A0.96
C12—H12A0.93C27—H27B0.96
C13—C141.362 (4)C27—H27C0.96
C22—O2—C26118.2 (2)C14—C15—H15A119.7
C1—N1—C2118.6 (2)O1—C16—C17120.8 (3)
N1—C1—C9122.4 (2)O1—C16—C9119.0 (3)
N1—C1—C25116.1 (2)C17—C16—C9120.2 (3)
C9—C1—C25121.5 (2)C18—C17—C16124.4 (3)
N1—C2—C3119.0 (2)C18—C17—H17A117.8
N1—C2—C7123.1 (2)C16—C17—H17A117.8
C3—C2—C7118.0 (3)C17—C18—C19127.5 (3)
C4—C3—C2122.0 (2)C17—C18—H18A116.2
C4—C3—H3A119.0C19—C18—H18A116.2
C2—C3—H3A119.0C24—C19—C20117.1 (3)
C3—C4—C5119.6 (2)C24—C19—C18120.3 (2)
C3—C4—H4A120.2C20—C19—C18122.6 (3)
C5—C4—H4A120.2C21—C20—C19120.9 (3)
C6—C5—C4120.8 (3)C21—C20—H20A119.6
C6—C5—Cl1119.7 (2)C19—C20—H20A119.6
C4—C5—Cl1119.5 (2)C20—C21—C22120.5 (2)
C5—C6—C7120.3 (2)C20—C21—H21A119.7
C5—C6—H6A119.8C22—C21—H21A119.7
C7—C6—H6A119.8O2—C22—C23125.1 (3)
C6—C7—C2119.3 (2)O2—C22—C21116.0 (2)
C6—C7—C8123.3 (2)C23—C22—C21118.8 (3)
C2—C7—C8117.4 (2)C24—C23—C22119.9 (3)
C9—C8—C7118.5 (2)C24—C23—H23A120.0
C9—C8—C10122.7 (2)C22—C23—H23A120.0
C7—C8—C10118.8 (2)C23—C24—C19122.7 (2)
C8—C9—C1120.1 (2)C23—C24—H24A118.6
C8—C9—C16119.3 (2)C19—C24—H24A118.6
C1—C9—C16120.4 (2)C1—C25—H25A109.5
C11—C10—C15118.8 (2)C1—C25—H25B109.5
C11—C10—C8120.5 (2)H25A—C25—H25B109.5
C15—C10—C8120.6 (2)C1—C25—H25C109.5
C10—C11—C12119.9 (3)H25A—C25—H25C109.5
C10—C11—H11A120.1H25B—C25—H25C109.5
C12—C11—H11A120.1O2—C26—C27108.7 (2)
C13—C12—C11120.6 (3)O2—C26—H26A109.9
C13—C12—H12A119.7C27—C26—H26A109.9
C11—C12—H12A119.7O2—C26—H26B109.9
C12—C13—C14119.6 (3)C27—C26—H26B109.9
C12—C13—H13A120.2H26A—C26—H26B108.3
C14—C13—H13A120.2C26—C27—H27A109.5
C13—C14—C15120.4 (3)C26—C27—H27B109.5
C13—C14—H14A119.8H27A—C27—H27B109.5
C15—C14—H14A119.8C26—C27—H27C109.5
C10—C15—C14120.7 (3)H27A—C27—H27C109.5
C10—C15—H15A119.7H27B—C27—H27C109.5
C2—N1—C1—C91.0 (4)C7—C8—C10—C1586.0 (3)
C2—N1—C1—C25−178.4 (2)C15—C10—C11—C120.0 (4)
C1—N1—C2—C3177.5 (2)C8—C10—C11—C12177.7 (3)
C1—N1—C2—C7−0.9 (4)C10—C11—C12—C130.2 (4)
N1—C2—C3—C4−177.9 (2)C11—C12—C13—C14−0.2 (5)
C7—C2—C3—C40.6 (4)C12—C13—C14—C150.0 (5)
C2—C3—C4—C5−0.6 (4)C11—C10—C15—C14−0.2 (4)
C3—C4—C5—C6−0.2 (4)C8—C10—C15—C14−177.9 (3)
C3—C4—C5—Cl1180.0 (2)C13—C14—C15—C100.2 (4)
C4—C5—C6—C71.0 (4)C8—C9—C16—O1−79.3 (3)
Cl1—C5—C6—C7−179.20 (18)C1—C9—C16—O196.4 (3)
C5—C6—C7—C2−1.0 (4)C8—C9—C16—C17100.5 (3)
C5—C6—C7—C8177.8 (2)C1—C9—C16—C17−83.8 (3)
N1—C2—C7—C6178.6 (2)O1—C16—C17—C18−176.1 (3)
C3—C2—C7—C60.2 (3)C9—C16—C17—C184.1 (4)
N1—C2—C7—C8−0.3 (3)C16—C17—C18—C19178.4 (2)
C3—C2—C7—C8−178.7 (2)C17—C18—C19—C24−163.6 (3)
C6—C7—C8—C9−177.6 (2)C17—C18—C19—C2015.7 (4)
C2—C7—C8—C91.3 (3)C24—C19—C20—C211.9 (4)
C6—C7—C8—C102.3 (3)C18—C19—C20—C21−177.4 (3)
C2—C7—C8—C10−178.9 (2)C19—C20—C21—C22−0.4 (4)
C7—C8—C9—C1−1.2 (3)C26—O2—C22—C231.8 (4)
C10—C8—C9—C1179.0 (2)C26—O2—C22—C21−179.7 (3)
C7—C8—C9—C16174.6 (2)C20—C21—C22—O2−179.1 (3)
C10—C8—C9—C16−5.2 (4)C20—C21—C22—C23−0.5 (4)
N1—C1—C9—C80.0 (4)O2—C22—C23—C24178.4 (3)
C25—C1—C9—C8179.4 (2)C21—C22—C23—C240.0 (4)
N1—C1—C9—C16−175.7 (2)C22—C23—C24—C191.6 (4)
C25—C1—C9—C163.7 (4)C20—C19—C24—C23−2.5 (4)
C9—C8—C10—C1188.1 (3)C18—C19—C24—C23176.8 (3)
C7—C8—C10—C11−91.7 (3)C22—O2—C26—C27−171.7 (3)
C9—C8—C10—C15−94.2 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C21—H21A···O2i0.932.573.493 (3)172

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5014).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wiscosin, USA.
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Wu, Y.-C., Liu, L., Li, H.-J., Wang, D. & Chen, Y.-J. (2006). J. Org. Chem.71, 6592–6595. [PubMed]
  • Yamazaki, S., Morita, T. & Endo, H. (2002). Cancer Lett.183, 23–30. [PubMed]
  • Zi, X. & Simoneau, A. R. (2005). Cancer Res.658, 3479–3486. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography