PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o260–o261.
Published online 2010 January 9. doi:  10.1107/S1600536809055123
PMCID: PMC2979676

24-Methyl­enecyclo­artanone

Abstract

The title compound, C31H50O, a tetra­cyclic triterpene, was isolated from Ainsliaea henryi. The mol­ecule contains a three-membered ring, a five-membered ring, which exhibits an envelope conformation, and three six-membered rings, which adopt chair conformations.

Related literature

The title compound was first isolated from rice bran oil, see: Ohta & Shimizu (1958 [triangle]). For its relative stereochemistry, see: Alves et al. (2000 [triangle]); Ohta & Shimizu (1958 [triangle]). For general background the title compound and the plant Ainsliaea henryi, see: Anjaneyulu et al. (1999 [triangle]); Boehme et al. (1997 [triangle]); Chinese Materia Medica (2007 [triangle]); Ei-Dib et al. (2004 [triangle]); Fiechi et al. (1966 [triangle]); Gabrera & Seldes (1995 [triangle]); Jayasinghe et al. (2001 [triangle]); Kojima et al. (1985 [triangle]); Kolhe et al. (1982 [triangle]); Lao et al. (1984 [triangle]); Lawrie et al. (1970 [triangle]); Li & Xue (1986 [triangle]); Manoharan et al. (2005 [triangle]); Ohtsu et al. (1998 [triangle]); Schulte et al. (1979 [triangle]); Tachi et al. (1971 [triangle]); Tandon & Rastogi (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o260-scheme1.jpg

Experimental

Crystal data

  • C31H50O
  • M r = 438.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o260-efi1.jpg
  • a = 9.918 (5) Å
  • b = 10.212 (6) Å
  • c = 14.077 (7) Å
  • β = 108.542 (6)°
  • V = 1351.7 (12) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.06 mm−1
  • T = 293 K
  • 0.40 × 0.25 × 0.15 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.976, T max = 0.991
  • 6145 measured reflections
  • 4360 independent reflections
  • 2901 reflections with I > 2σ(I)
  • R int = 0.046

Refinement

  • R[F 2 > 2σ(F 2)] = 0.052
  • wR(F 2) = 0.133
  • S = 0.91
  • 4360 reflections
  • 296 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.14 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536809055123/pk2219sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536809055123/pk2219Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Lin-Hong Weng (Department of Chemistry, Fudan University, Shanghai) for the structure analysis.

supplementary crystallographic information

Comment

Ainsliaea henryi Diels is mainly distributed in south-west of China. The whole plant of Ainsliaea henryi has been used in Chinese folk medicine to treat cough, asthma and lumbago (Editorial committee of Chinese Materia Medica, 2007). The chemical constituents of this plant have not all been reported previously. Our chemical investigation of this plant for bioactive components resulted in the isolation of the title compound (I), which was previously first reported isolating from Rice Bran Oil (Ohta & Shimizu, 1958).

The molecular structure is shown in Fig.1. All the bond lengths and angles are within normal ranges. The molecule contains three six-membered rings (A ring atoms C1—C5/C10; B ring atoms C5—C10; C ring atoms C8/C9/C11—C14), a five-member ring (D ring atoms C13—C17), and a three-member ring (E ring C9—C10/C19). Ring A, B and C adopt chair conformations, while ring D exhibits an envelope conformation.

Experimental

The dry powders (5 kg) of the whole plant of Ainsliaea henryi were refluxed for 1 h with 95% ethanol (50L) three times. After removal of the ethanol under reduced pressure, the extract was suspended in water and then partitioned with petroleum ether, chloroform, ethyl acetate and n-butanol. The petroleum ether soluble fraction (100 g) was subjected to silica gel column chromatography using gradient elution (petroleum ether/acetone, 30:1 to 10:1, v/v). 24-methylenecycloartanone was obtained from the fraction eluted by petroleum ether/acetone (20:1). Single crystals suitable for X-ray diffraction analysis were obtained by slow evaporation from acetone after two weeks at room temperature.

Refinement

The H atoms were located in difference maps and freely refined. As a consequence the absolute configuration of the compound is unknown. The relative stereochemistry of the title compound is known from literature (Alves et al.(2000); Ohta & Shimizu (1958)). Its structure was elucidated by chemical methods and by 1H, 13C, 2D NMR spectroscopy.

Figures

Fig. 1.
The molecular structure showing the atom-labelling scheme with displacement ellipsoids drawn at the 30% probability level. H atoms are shown as small spheres of arbitrary radius.
Fig. 2.
The molecular packing viewed along the b axis.

Crystal data

C31H50OF(000) = 488
Mr = 438.71Dx = 1.078 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.918 (5) ÅCell parameters from 829 reflections
b = 10.212 (6) Åθ = 2.2–21.1°
c = 14.077 (7) ŵ = 0.06 mm1
β = 108.542 (6)°T = 293 K
V = 1351.7 (12) Å3Prism, colorless
Z = 20.40 × 0.25 × 0.15 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer4360 independent reflections
Radiation source: fine-focus sealed tube2901 reflections with I > 2σ(I)
graphiteRint = 0.046
[var phi] and ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −12→12
Tmin = 0.976, Tmax = 0.991k = −10→12
6145 measured reflectionsl = −17→15

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.052H-atom parameters constrained
wR(F2) = 0.133w = 1/[σ2(Fo2) + (0.0807P)2] where P = (Fo2 + 2Fc2)/3
S = 0.91(Δ/σ)max = 0.004
4360 reflectionsΔρmax = 0.14 e Å3
296 parametersΔρmin = −0.20 e Å3
1 restraintAbsolute structure: Flack (1983), 1530 Friedel pairs
0 constraintsFlack parameter: 6 (3)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O11.1781 (3)−0.0520 (3)0.53829 (18)0.0989 (8)
C11.0700 (3)−0.0933 (3)0.7520 (2)0.0627 (8)
H1A1.0112−0.16490.71630.075*
H1B1.1113−0.11890.82160.075*
C21.1884 (3)−0.0661 (4)0.7068 (2)0.0706 (9)
H2A1.2560−0.00560.74990.085*
H2B1.2382−0.14720.70460.085*
C31.1341 (3)−0.0092 (3)0.6026 (3)0.0688 (8)
C41.0282 (3)0.1017 (3)0.5845 (2)0.0618 (7)
C50.9150 (3)0.0692 (3)0.63678 (18)0.0535 (6)
H50.8660−0.00900.60220.064*
C60.7980 (3)0.1717 (3)0.6220 (2)0.0644 (8)
H6A0.83900.25400.65200.077*
H6B0.75100.18610.55110.077*
C70.6908 (3)0.1234 (3)0.67106 (19)0.0630 (8)
H7A0.66040.03550.64780.076*
H7B0.60780.17980.65170.076*
C80.7557 (2)0.1230 (3)0.78469 (17)0.0488 (6)
H80.77960.21440.80440.059*
C90.8977 (2)0.0462 (3)0.82016 (17)0.0487 (6)
C100.9795 (2)0.0275 (3)0.74516 (19)0.0511 (7)
C110.9098 (3)−0.0640 (3)0.89571 (19)0.0567 (7)
H11A1.0098−0.07700.93200.068*
H11B0.8752−0.14380.85860.068*
C120.8305 (3)−0.0463 (3)0.97370 (18)0.0551 (7)
H12A0.7763−0.12520.97460.066*
H12B0.9003−0.03671.03960.066*
C130.7297 (2)0.0710 (3)0.95408 (16)0.0457 (6)
C140.6517 (2)0.0792 (3)0.83892 (17)0.0454 (6)
C150.5341 (3)0.1789 (3)0.83282 (19)0.0555 (7)
H15A0.56880.26750.83150.067*
H15B0.45340.16480.77310.067*
C160.4922 (3)0.1564 (3)0.92712 (19)0.0596 (7)
H16A0.39800.11810.90960.072*
H16B0.49150.23890.96120.072*
C170.6035 (2)0.0623 (3)0.99590 (17)0.0492 (6)
H170.5645−0.02640.98130.059*
C180.8169 (3)0.1938 (3)0.9943 (2)0.0617 (7)
H18A0.88850.20420.96240.092*
H18B0.86150.18551.06540.092*
H18C0.75550.26890.98050.092*
C191.0290 (3)0.1257 (3)0.82928 (19)0.0608 (7)
H19A1.11440.10510.88410.073*
H19B1.01650.21790.81200.073*
C200.6255 (3)0.0873 (3)1.10733 (18)0.0570 (7)
H200.65700.17811.12240.068*
C210.7383 (3)−0.0022 (4)1.1761 (2)0.0780 (10)
H21A0.7108−0.09201.16120.117*
H21B0.74690.01611.24460.117*
H21C0.82800.01291.16550.117*
C220.4822 (3)0.0714 (3)1.12670 (18)0.0603 (7)
H22A0.41720.13681.08740.072*
H22B0.4436−0.01381.10180.072*
C230.4841 (3)0.0832 (4)1.23481 (19)0.0675 (8)
H23A0.54830.01731.27420.081*
H23B0.52300.16811.26000.081*
C240.3429 (3)0.0683 (3)1.2521 (2)0.0671 (8)
C250.3436 (4)0.0745 (4)1.3605 (2)0.0851 (10)
H250.24960.04271.35900.102*
C260.4480 (4)−0.0188 (4)1.4282 (2)0.0938 (11)
H26A0.4323−0.02251.49200.141*
H26B0.54310.01091.43730.141*
H26C0.4354−0.10451.39860.141*
C270.3530 (6)0.2084 (4)1.3999 (3)0.1210 (16)
H27A0.27080.25721.36200.181*
H27B0.43720.24981.39450.181*
H27C0.35730.20571.46890.181*
C281.1138 (4)0.2263 (3)0.6265 (3)0.0837 (10)
H28A1.04980.29880.62000.126*
H28B1.17840.24450.58990.126*
H28C1.16660.21330.69600.126*
C290.9553 (4)0.1175 (4)0.4711 (2)0.0858 (10)
H29A0.89860.04150.44530.129*
H29B1.02630.12730.43850.129*
H29C0.89560.19380.45870.129*
C300.5813 (3)−0.0514 (3)0.79658 (19)0.0564 (7)
H30A0.6532−0.11330.79460.085*
H30B0.5172−0.03790.73000.085*
H30C0.5295−0.08450.83860.085*
C310.2222 (3)0.0485 (5)1.1819 (3)0.0985 (13)
H31A0.21950.04271.11540.118*
H31B0.13890.04031.19830.118*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.1252 (19)0.092 (2)0.1038 (17)0.0216 (16)0.0714 (15)0.0033 (16)
C10.0527 (15)0.068 (2)0.0665 (17)0.0111 (14)0.0177 (13)0.0094 (15)
C20.0561 (16)0.083 (2)0.0737 (19)0.0086 (16)0.0222 (14)−0.0040 (18)
C30.0722 (19)0.062 (2)0.083 (2)−0.0045 (16)0.0394 (17)−0.0080 (17)
C40.0677 (16)0.059 (2)0.0637 (17)−0.0049 (15)0.0278 (13)−0.0020 (15)
C50.0566 (14)0.0481 (16)0.0532 (14)−0.0033 (14)0.0139 (11)−0.0010 (13)
C60.0673 (17)0.066 (2)0.0598 (16)0.0105 (15)0.0198 (13)0.0175 (15)
C70.0539 (15)0.076 (2)0.0544 (15)0.0136 (14)0.0109 (12)0.0157 (15)
C80.0470 (13)0.0434 (14)0.0522 (14)0.0029 (11)0.0106 (11)0.0036 (12)
C90.0424 (13)0.0552 (18)0.0434 (13)0.0042 (12)0.0066 (10)0.0017 (12)
C100.0418 (13)0.0554 (17)0.0538 (15)0.0041 (12)0.0122 (11)0.0004 (12)
C110.0500 (14)0.0578 (18)0.0596 (16)0.0163 (13)0.0137 (12)0.0101 (14)
C120.0539 (15)0.0563 (18)0.0501 (15)0.0095 (13)0.0095 (12)0.0075 (13)
C130.0418 (12)0.0434 (14)0.0477 (13)0.0023 (12)0.0086 (10)0.0003 (12)
C140.0409 (11)0.0410 (14)0.0489 (13)0.0029 (11)0.0067 (10)−0.0024 (12)
C150.0498 (14)0.0590 (18)0.0554 (15)0.0119 (13)0.0135 (12)0.0026 (13)
C160.0591 (15)0.0576 (19)0.0606 (15)0.0128 (13)0.0169 (12)0.0001 (14)
C170.0498 (13)0.0439 (15)0.0503 (13)0.0015 (12)0.0110 (11)−0.0017 (13)
C180.0627 (17)0.0607 (19)0.0582 (16)−0.0092 (14)0.0145 (13)−0.0077 (14)
C190.0494 (14)0.072 (2)0.0584 (16)−0.0089 (14)0.0129 (12)−0.0050 (15)
C200.0608 (15)0.0550 (18)0.0520 (14)−0.0003 (14)0.0135 (12)−0.0047 (13)
C210.0720 (18)0.103 (3)0.0548 (17)0.0160 (18)0.0145 (14)0.0079 (17)
C220.0714 (16)0.0582 (17)0.0521 (15)0.0002 (15)0.0206 (12)−0.0068 (14)
C230.0748 (17)0.072 (2)0.0535 (15)0.0040 (16)0.0165 (13)−0.0042 (16)
C240.0770 (19)0.067 (2)0.0611 (17)0.0106 (18)0.0266 (15)−0.0006 (16)
C250.099 (2)0.104 (3)0.0598 (19)0.011 (2)0.0346 (17)0.004 (2)
C260.115 (3)0.095 (3)0.067 (2)−0.010 (2)0.0237 (19)0.013 (2)
C270.209 (5)0.088 (3)0.083 (3)0.015 (3)0.071 (3)−0.014 (2)
C280.092 (2)0.063 (2)0.110 (3)−0.0162 (19)0.051 (2)0.000 (2)
C290.107 (2)0.089 (3)0.071 (2)0.007 (2)0.0418 (18)0.0105 (19)
C300.0497 (14)0.0582 (18)0.0587 (16)−0.0042 (13)0.0134 (12)−0.0114 (14)
C310.074 (2)0.151 (4)0.072 (2)0.004 (2)0.0248 (18)0.000 (2)

Geometric parameters (Å, °)

O1—C31.205 (3)C16—H16A0.9700
C1—C101.511 (4)C16—H16B0.9700
C1—C21.528 (4)C17—C201.535 (4)
C1—H1A0.9700C17—H170.9800
C1—H1B0.9700C18—H18A0.9600
C2—C31.509 (4)C18—H18B0.9600
C2—H2A0.9700C18—H18C0.9600
C2—H2B0.9700C19—H19A0.9700
C3—C41.511 (4)C19—H19B0.9700
C4—C291.537 (4)C20—C211.528 (4)
C4—C281.539 (4)C20—C221.539 (4)
C4—C51.562 (4)C20—H200.9800
C5—C101.516 (4)C21—H21A0.9600
C5—C61.527 (4)C21—H21B0.9600
C5—H50.9800C21—H21C0.9600
C6—C71.522 (4)C22—C231.521 (4)
C6—H6A0.9700C22—H22A0.9700
C6—H6B0.9700C22—H22B0.9700
C7—C81.523 (4)C23—C241.504 (4)
C7—H7A0.9700C23—H23A0.9700
C7—H7B0.9700C23—H23B0.9700
C8—C141.532 (3)C24—C311.303 (4)
C8—C91.549 (3)C24—C251.524 (4)
C8—H80.9800C25—C271.467 (6)
C9—C191.505 (4)C25—C261.504 (5)
C9—C111.527 (4)C25—H250.9800
C9—C101.534 (4)C26—H26A0.9600
C10—C191.510 (4)C26—H26B0.9600
C11—C121.551 (4)C26—H26C0.9600
C11—H11A0.9700C27—H27A0.9600
C11—H11B0.9700C27—H27B0.9600
C12—C131.528 (4)C27—H27C0.9600
C12—H12A0.9700C28—H28A0.9600
C12—H12B0.9700C28—H28B0.9600
C13—C181.526 (4)C28—H28C0.9600
C13—C171.546 (3)C29—H29A0.9600
C13—C141.561 (3)C29—H29B0.9600
C14—C151.530 (3)C29—H29C0.9600
C14—C301.534 (4)C30—H30A0.9600
C15—C161.529 (4)C30—H30B0.9600
C15—H15A0.9700C30—H30C0.9600
C15—H15B0.9700C31—H31A0.9300
C16—C171.549 (3)C31—H31B0.9300
C10—C1—C2110.2 (2)C17—C16—H16A110.2
C10—C1—H1A109.6C15—C16—H16B110.2
C2—C1—H1A109.6C17—C16—H16B110.2
C10—C1—H1B109.6H16A—C16—H16B108.5
C2—C1—H1B109.6C20—C17—C13120.69 (19)
H1A—C1—H1B108.1C20—C17—C16112.2 (2)
C3—C2—C1113.0 (2)C13—C17—C16103.2 (2)
C3—C2—H2A109.0C20—C17—H17106.7
C1—C2—H2A109.0C13—C17—H17106.7
C3—C2—H2B109.0C16—C17—H17106.7
C1—C2—H2B109.0C13—C18—H18A109.5
H2A—C2—H2B107.8C13—C18—H18B109.5
O1—C3—C2119.3 (3)H18A—C18—H18B109.5
O1—C3—C4122.9 (3)C13—C18—H18C109.5
C2—C3—C4117.8 (3)H18A—C18—H18C109.5
C3—C4—C29109.1 (3)H18B—C18—H18C109.5
C3—C4—C28106.6 (2)C9—C19—C1061.19 (17)
C29—C4—C28109.4 (3)C9—C19—H19A117.6
C3—C4—C5109.0 (2)C10—C19—H19A117.6
C29—C4—C5109.9 (2)C9—C19—H19B117.6
C28—C4—C5112.7 (2)C10—C19—H19B117.6
C10—C5—C6112.9 (2)H19A—C19—H19B114.8
C10—C5—C4113.4 (2)C21—C20—C17112.7 (2)
C6—C5—C4114.8 (2)C21—C20—C22110.9 (2)
C10—C5—H5104.8C17—C20—C22108.92 (19)
C6—C5—H5104.8C21—C20—H20108.1
C4—C5—H5104.8C17—C20—H20108.1
C7—C6—C5109.1 (2)C22—C20—H20108.1
C7—C6—H6A109.9C20—C21—H21A109.5
C5—C6—H6A109.9C20—C21—H21B109.5
C7—C6—H6B109.9H21A—C21—H21B109.5
C5—C6—H6B109.9C20—C21—H21C109.5
H6A—C6—H6B108.3H21A—C21—H21C109.5
C6—C7—C8110.7 (2)H21B—C21—H21C109.5
C6—C7—H7A109.5C23—C22—C20116.8 (2)
C8—C7—H7A109.5C23—C22—H22A108.1
C6—C7—H7B109.5C20—C22—H22A108.1
C8—C7—H7B109.5C23—C22—H22B108.1
H7A—C7—H7B108.1C20—C22—H22B108.1
C7—C8—C14113.4 (2)H22A—C22—H22B107.3
C7—C8—C9112.2 (2)C24—C23—C22116.0 (2)
C14—C8—C9112.2 (2)C24—C23—H23A108.3
C7—C8—H8106.1C22—C23—H23A108.3
C14—C8—H8106.1C24—C23—H23B108.3
C9—C8—H8106.1C22—C23—H23B108.3
C19—C9—C11117.6 (2)H23A—C23—H23B107.4
C19—C9—C1059.54 (17)C31—C24—C23124.8 (3)
C11—C9—C10116.5 (2)C31—C24—C25118.5 (3)
C19—C9—C8115.3 (2)C23—C24—C25116.7 (3)
C11—C9—C8117.4 (2)C27—C25—C26113.7 (3)
C10—C9—C8117.8 (2)C27—C25—C24113.3 (3)
C19—C10—C1117.0 (2)C26—C25—C24113.0 (3)
C19—C10—C5122.1 (2)C27—C25—H25105.2
C1—C10—C5110.2 (2)C26—C25—H25105.2
C19—C10—C959.27 (17)C24—C25—H25105.2
C1—C10—C9119.4 (2)C25—C26—H26A109.5
C5—C10—C9120.8 (2)C25—C26—H26B109.5
C9—C11—C12117.5 (2)H26A—C26—H26B109.5
C9—C11—H11A107.9C25—C26—H26C109.5
C12—C11—H11A107.9H26A—C26—H26C109.5
C9—C11—H11B107.9H26B—C26—H26C109.5
C12—C11—H11B107.9C25—C27—H27A109.5
H11A—C11—H11B107.2C25—C27—H27B109.5
C13—C12—C11114.4 (2)H27A—C27—H27B109.5
C13—C12—H12A108.7C25—C27—H27C109.5
C11—C12—H12A108.7H27A—C27—H27C109.5
C13—C12—H12B108.7H27B—C27—H27C109.5
C11—C12—H12B108.7C4—C28—H28A109.5
H12A—C12—H12B107.6C4—C28—H28B109.5
C18—C13—C12108.44 (19)H28A—C28—H28B109.5
C18—C13—C17109.7 (2)C4—C28—H28C109.5
C12—C13—C17116.6 (2)H28A—C28—H28C109.5
C18—C13—C14112.1 (2)H28B—C28—H28C109.5
C12—C13—C14108.02 (19)C4—C29—H29A109.5
C17—C13—C14101.81 (16)C4—C29—H29B109.5
C15—C14—C8113.5 (2)H29A—C29—H29B109.5
C15—C14—C30108.2 (2)C4—C29—H29C109.5
C8—C14—C30110.8 (2)H29A—C29—H29C109.5
C15—C14—C13102.19 (19)H29B—C29—H29C109.5
C8—C14—C13110.07 (18)C14—C30—H30A109.5
C30—C14—C13111.8 (2)C14—C30—H30B109.5
C16—C15—C14105.3 (2)H30A—C30—H30B109.5
C16—C15—H15A110.7C14—C30—H30C109.5
C14—C15—H15A110.7H30A—C30—H30C109.5
C16—C15—H15B110.7H30B—C30—H30C109.5
C14—C15—H15B110.7C24—C31—H31A120.0
H15A—C15—H15B108.8C24—C31—H31B120.0
C15—C16—C17107.4 (2)H31A—C31—H31B120.0
C15—C16—H16A110.2

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2219).

References

  • Alves, J. S., De Castro, J. C. M., Freire, M. O., Leitao Da-Cunha, E. V., Barbosa-Filho, J. M. & De Silva, M. S. (2000). Magn. Reson. Chem.38, 201–206.
  • Anjaneyulu, V., Satyanarayana, P., Viswanadham, K. N., Jyothi, V. G., Rao, K. N. & Radhika, P. (1999). Phytochemistry, 50, 1229–1236.
  • Boehme, F., Schmidt, J., Van Sung, T. & Adam, G. (1997). Phytochemistry, 45, 1041–1044.
  • Bruker (2005). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Chinese Materia Medica (2007). Chinese Materia Medica, Vol. 21, p. 643. Shanghai Science Press.
  • Ei-Dib, R., Kaloga, M., Mahmoud, I., Soliman, H. S. H., Moharram, F. & Kolodzej, H. (2004). Phytochemistry, 65, 1153–1157. [PubMed]
  • Fiechi, A., Capella, P., Fedeli, E., Lanzani, A. & Jacini, G. (1966). Ric.Sci.36, 1316–1320.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Gabrera, G. M. & Seldes, A. (1995). J. Nat. Prod.58, 1920–1924.
  • Jayasinghe, U. L. B., Vithana, H. S. K., Wannigama, G. P. & Fujimoto, Y. (2001). Fitoterapia, 72, 594–595. [PubMed]
  • Kojima, Y., Djamal, S. & Kayama, T. (1985). Mokuzai Gakkaishi, 31, 312–315.
  • Kolhe, J. N., Bhaskar, A. & Bringi, N. V. (1982). Lipids, 17, 166–168.
  • Lao, A., Fujimoto, Y. & Tatsuno, T. (1984). Chem. Pharm. Bull.32, 723–727.
  • Lawrie, W., Mclean, J. & Olubajo, O. O. (1970). Phytochemistry, 9, 1669–11670.
  • Li, L. N. & Xue, H. (1986). Planta Med.6, 492–493.
  • Manoharan, K. P., Benny, T. K. H. & Yang, D. (2005). Phytochemistry, 66, 2304–2308. [PubMed]
  • Ohta, G. & Shimizu, M. (1958). Chem. Pharm. Bull.3, 325–326. [PubMed]
  • Ohtsu, H., Tanaka, R., Michida, T., Shingu, T. & Matsunaga, S. (1998). Phytochemistry, 49, 1761–1768. [PubMed]
  • Schulte, K. E., Ruecker, G. & Matern, H. U. (1979). Planta Med.35, 76–83.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tachi, Y., Taga, S., Kamano, Y. & Manki, K. (1971). Chem. Pharm. Bull, 19, 2193–2194.
  • Tandon, S. & Rastogi, R. P. (1976). Planta Med.29, 190–192. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography