PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): m173.
Published online 2010 January 16. doi:  10.1107/S1600536810001364
PMCID: PMC2979673

Bis{2-hydr­oxy-N-[2-(2-pyrid­yl)eth­yl]benzamide}copper(I) tetra­fluoridoborate

Abstract

The title complex, [Cu(C14H14N2O2)2]BF4, is a monomeric copper(I) species with linear two-coordinate geometry around the CuI atom. The asymmetric unit contains two half-cations that sit on crystallographic twofold rotation axes. The selected crystal was non-merohedrally twinned by a twofold rotation about an axis normal to the (100) family of planes. The ratio of the twin components refined to 0.4123 (6). Two 2-hydr­oxy-N-[2-(2-pyrid­yl)eth­yl]benzamide ligands coordinate to each CuI atom via the pyridyl N atom. Intra­molecular hydrogen bonding between the phenol OH groups and the amide O atoms imparts rigidity and planarity to the non-coordinating end of the ligand. The cationic complex is linked to the BF4 anions via hydrogen bonding between the amide NH groups in the cations and BF4 anions.

Related literature

For the synthesis and coordination chemistry of 2-hydr­oxy-N-(2-(2-pyrid­yl)eth­yl)benzamide, see: Wang et al. (2009 [triangle]). For the copper(I) coordination chemistry of pyridylamides, see Yang et al. (2007 [triangle]) and references therein.

An external file that holds a picture, illustration, etc.
Object name is e-66-0m173-scheme1.jpg

Experimental

Crystal data

  • [Cu(C14H14N2O2)2]BF4
  • M r = 634.89
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m173-efi1.jpg
  • a = 21.943 (5) Å
  • b = 17.586 (4) Å
  • c = 14.607 (2) Å
  • β = 107.988 (8)°
  • V = 5361.2 (19) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.89 mm−1
  • T = 100 K
  • 0.40 × 0.30 × 0.12 mm

Data collection

  • Bruker APEX CCD diffractometer
  • Absorption correction: multi-scan (TWINABS; Bruker, 2001 [triangle]) T min = 0.714, T max = 0.905
  • 10344 measured reflections
  • 10344 independent reflections
  • 8548 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.096
  • S = 1.00
  • 10344 reflections
  • 393 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.54 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810001364/bt5166sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001364/bt5166Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National Science Foundation (CHE-0094079) supported this work. We also thank the NSF (CHE-0130835) and the University of Oklahoma for the purchase of a CCD equipped X-ray diffractometer.

supplementary crystallographic information

Comment

Our laboratory has synthesized copper(I) and copper(II) complexes of pyridylmethylamide ligands that display different coordination modes depending on whether or not the amide group is protonated (Wang, et al. 2009, and references therein). The synthesis of copper(I) complexes with these ligands is limited to the neutral form of the ligand, where the amide group is not deprotonated (Yang, et al. 2007, and references therein). Attempts to synthesize copper(I) species in the presence of base results in disproportionation of the copper(I) to copper(0) and copper(II). The title complex was synthesized with the phenol-substituted ligand 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide. Copper(II) complexes with 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide are either mononuclear, when synthesized in the absence of base ([Cu(C14H14N2O2)2Cl2]), or a tetracopper cluster, in the presence of base ([Cu4(C14H12N2O2)4]) (Wang, et al. 2009). The ligand in the tetracopper cluster is a dianion with the amide NH and the phenol OH both deprotonated. The title complex differs from both copper(II) complexes in that the ligand only coordinates via the pyridyl N atom.

Experimental

2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide was synthesized using a previously reported procedure (Wang, et al. 2009). The title complex, [Cu(C14H14N2O2)2]BF4, was synthesized using the following procedure: A solution of [Cu(CH3CN)4]BF4 (0.0778 g, 0.250 mmol) in CH3CN was added to a solution of 2-hydroxy-N-(2-(2-pyridyl)ethyl)benzamide (0.121 g, 0.500 mmol) in CH3CN. The resulting light yellow solution was filtered, and vapor diffusion of diethyl ether produced light yellow crystals of the title complex (0.114 g, 72% yield).

Refinement

Hydrogen atoms bonded to C were geometrically positioned and refined by a riding model. Hydrogen atom displacement parameters were set to 1.2 (1.5 for methyl) times the displacement parameters of the bonded atoms. The coordinates of the H atoms bonded to N and O were refined with U(H)=1.2Ueq(N,O). The twin law was (1 0 0.928/ 0 -1 0/ 0 0 -1). The contribution of the minor twin domain refined to 0.437 (4).

Figures

Fig. 1.
The molecular structure of the cation (molecule A) in [Cu(C14H14N2O2)2]BF4, showing the atom-numbering scheme.
Fig. 2.
The packing of [Cu(C14H14N2O2)2]BF4, viewed down the c axis, highlighting the hydrogen bonding between complex cations and BF4- anions (dashed lines). H atoms have been omitted for clarity.

Crystal data

[Cu(C14H14N2O2)2]BF4F(000) = 2608
Mr = 634.89Dx = 1.573 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 21.943 (5) ÅCell parameters from 6701 reflections
b = 17.586 (4) Åθ = 2.3–28.3°
c = 14.607 (2) ŵ = 0.89 mm1
β = 107.988 (8)°T = 100 K
V = 5361.2 (19) Å3Block, colorless
Z = 80.40 × 0.30 × 0.12 mm

Data collection

Bruker APEX CCD diffractometer10344 independent reflections
Radiation source: fine-focus sealed tube8548 reflections with I > 2σ(I)
graphiteRint = 0.0000
ω scansθmax = 26.0°, θmin = 1.5°
Absorption correction: multi-scan (TWINABS; Bruker, 2001)h = −27→25
Tmin = 0.714, Tmax = 0.905k = 0→21
10344 measured reflectionsl = 0→18

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.096H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.058P)2] where P = (Fo2 + 2Fc2)/3
10344 reflections(Δ/σ)max < 0.001
393 parametersΔρmax = 0.54 e Å3
4 restraintsΔρmin = −0.38 e Å3

Special details

Experimental. The selected crystal was twinned by a 2-fold rotation about an axis perpendicular to c. The ratio of the twin components was refined to 0.4123 (6).
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Restraints on the N—H and O—H distances were required.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cu1A0.00000.030574 (19)0.75000.01887 (10)
N1A0.09032 (7)0.02912 (8)0.79796 (11)0.0148 (3)
C2A0.12104 (9)0.08497 (11)0.85712 (14)0.0184 (4)
H2A0.09740.12870.86370.022*
C3A0.18505 (9)0.08182 (12)0.90856 (14)0.0214 (5)
H3A0.20510.12240.94980.026*
C4A0.21963 (10)0.01848 (12)0.89906 (14)0.0220 (5)
H4A0.26380.01430.93440.026*
C5A0.18878 (9)−0.03911 (11)0.83694 (14)0.0188 (4)
H5A0.2120−0.08280.82870.023*
C6A0.12434 (9)−0.03273 (11)0.78714 (13)0.0155 (4)
C7A0.08947 (9)−0.09154 (11)0.71586 (13)0.0181 (4)
H7A10.0476−0.10250.72530.022*
H7A20.1147−0.13920.72650.022*
C8A0.07893 (10)−0.06360 (12)0.61306 (14)0.0223 (5)
H8A10.0594−0.01230.60600.027*
H8A20.1210−0.05910.60170.027*
N9A0.03805 (8)−0.11339 (10)0.54052 (13)0.0205 (4)
H9A0.0537 (11)−0.1414 (13)0.5197 (16)0.025*
C10A−0.02547 (10)−0.11003 (11)0.51659 (14)0.0185 (4)
O11A−0.05148 (7)−0.06621 (8)0.56110 (10)0.0255 (3)
C12A−0.06483 (9)−0.15652 (11)0.43500 (14)0.0176 (4)
C13A−0.03803 (10)−0.20269 (11)0.37943 (14)0.0201 (4)
H13A0.0072−0.20500.39440.024*
C14A−0.07586 (10)−0.24480 (12)0.30352 (14)0.0217 (5)
H14A−0.0567−0.27530.26620.026*
C15A−0.14213 (10)−0.24242 (12)0.28176 (15)0.0255 (5)
H15A−0.1683−0.27180.22990.031*
C16A−0.16987 (10)−0.19767 (12)0.33520 (15)0.0257 (5)
H16A−0.2152−0.19610.31980.031*
C17A−0.13206 (10)−0.15475 (11)0.41143 (14)0.0217 (5)
O18A−0.16259 (7)−0.11138 (9)0.46038 (11)0.0311 (4)
H18A−0.1339 (9)−0.0881 (13)0.5010 (15)0.047*
Cu1B0.50000.010247 (19)0.75000.02082 (11)
N1B0.40965 (8)0.00810 (9)0.71312 (11)0.0159 (3)
C2B0.37826 (10)0.06141 (12)0.74773 (14)0.0216 (5)
H2B0.40200.10320.78230.026*
C3B0.31395 (10)0.05821 (12)0.73547 (15)0.0259 (5)
H3B0.29370.09670.76140.031*
C4B0.27912 (10)−0.00173 (13)0.68487 (15)0.0270 (5)
H4B0.2343−0.00500.67440.032*
C5B0.31055 (9)−0.05727 (12)0.64944 (14)0.0223 (5)
H5B0.2873−0.09940.61510.027*
C6B0.37568 (9)−0.05145 (11)0.66406 (13)0.0167 (4)
C7B0.41130 (9)−0.10775 (11)0.62256 (14)0.0184 (4)
H7B10.3877−0.15660.61030.022*
H7B20.4542−0.11720.66910.022*
C8B0.41838 (10)−0.07684 (11)0.52831 (14)0.0206 (5)
H8B10.3757−0.07580.47900.025*
H8B20.4343−0.02390.53870.025*
N9B0.46169 (8)−0.12145 (9)0.49240 (12)0.0193 (4)
H9B0.4468 (10)−0.1543 (10)0.4524 (12)0.023*
C10B0.52477 (9)−0.11100 (10)0.52525 (14)0.0175 (4)
O11B0.54836 (7)−0.06623 (8)0.59362 (10)0.0230 (3)
C12B0.56650 (9)−0.15131 (10)0.47788 (14)0.0174 (4)
C13B0.54194 (10)−0.19890 (11)0.39787 (14)0.0198 (4)
H13B0.4970−0.20650.37300.024*
C14B0.58145 (11)−0.23465 (11)0.35483 (15)0.0233 (5)
H14B0.5639−0.26660.30070.028*
C15B0.64757 (11)−0.22376 (12)0.39108 (16)0.0259 (5)
H15B0.6751−0.24880.36170.031*
C16B0.67318 (10)−0.17715 (12)0.46890 (15)0.0253 (5)
H16B0.7182−0.16950.49260.030*
C17B0.63318 (10)−0.14095 (11)0.51318 (14)0.0206 (4)
O18B0.66125 (7)−0.09581 (9)0.58966 (11)0.0270 (3)
H18B0.6323 (8)−0.0777 (13)0.6054 (16)0.032*
B10.16533 (11)0.24811 (14)0.09405 (19)0.0238 (5)
F10.12698 (6)0.22361 (6)0.00247 (9)0.0272 (3)
F20.12345 (6)0.27278 (6)0.14410 (8)0.0265 (3)
F30.20174 (6)0.18853 (8)0.14239 (10)0.0391 (3)
F40.20245 (6)0.30833 (8)0.08330 (10)0.0416 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu1A0.01145 (18)0.01777 (19)0.0243 (2)0.0000.00099 (14)0.000
N1A0.0137 (8)0.0140 (8)0.0160 (9)−0.0013 (6)0.0036 (7)0.0018 (7)
C2A0.0203 (10)0.0181 (10)0.0186 (11)−0.0015 (8)0.0087 (8)−0.0006 (8)
C3A0.0189 (11)0.0256 (11)0.0194 (11)−0.0056 (9)0.0056 (9)−0.0044 (9)
C4A0.0132 (11)0.0309 (12)0.0207 (11)−0.0022 (9)0.0036 (8)−0.0005 (9)
C5A0.0171 (10)0.0219 (10)0.0188 (11)0.0023 (8)0.0077 (9)0.0012 (8)
C6A0.0184 (10)0.0159 (10)0.0133 (10)−0.0004 (8)0.0067 (8)0.0031 (8)
C7A0.0189 (10)0.0163 (10)0.0191 (11)−0.0016 (8)0.0058 (8)−0.0007 (8)
C8A0.0278 (12)0.0209 (11)0.0172 (11)−0.0062 (9)0.0054 (9)−0.0016 (8)
N9A0.0240 (10)0.0188 (9)0.0187 (9)−0.0008 (7)0.0066 (8)−0.0055 (7)
C10A0.0257 (11)0.0134 (10)0.0157 (10)0.0025 (8)0.0054 (8)0.0041 (8)
O11A0.0313 (9)0.0235 (8)0.0213 (8)0.0071 (7)0.0073 (7)−0.0050 (6)
C12A0.0225 (11)0.0154 (10)0.0149 (10)0.0015 (8)0.0059 (8)0.0015 (8)
C13A0.0203 (11)0.0201 (10)0.0201 (11)−0.0011 (8)0.0065 (9)0.0000 (9)
C14A0.0260 (12)0.0208 (11)0.0182 (11)−0.0001 (9)0.0068 (9)−0.0043 (9)
C15A0.0274 (13)0.0240 (11)0.0215 (12)−0.0047 (9)0.0022 (9)−0.0015 (9)
C16A0.0181 (11)0.0301 (12)0.0265 (12)0.0009 (9)0.0034 (9)0.0032 (10)
C17A0.0248 (11)0.0219 (11)0.0192 (11)0.0052 (9)0.0079 (9)0.0039 (9)
O18A0.0249 (9)0.0375 (10)0.0304 (9)0.0099 (7)0.0080 (7)−0.0067 (7)
Cu1B0.01183 (19)0.02000 (19)0.0276 (2)0.0000.00163 (15)0.000
N1B0.0136 (9)0.0171 (8)0.0158 (8)0.0025 (6)0.0027 (7)0.0025 (7)
C2B0.0251 (12)0.0208 (11)0.0165 (11)0.0045 (9)0.0030 (9)0.0015 (9)
C3B0.0268 (12)0.0306 (12)0.0226 (12)0.0121 (10)0.0109 (10)0.0049 (10)
C4B0.0156 (12)0.0419 (14)0.0249 (12)0.0038 (9)0.0086 (9)0.0100 (11)
C5B0.0182 (11)0.0272 (11)0.0194 (11)−0.0043 (9)0.0027 (9)0.0051 (9)
C6B0.0188 (10)0.0182 (10)0.0125 (10)0.0000 (8)0.0038 (8)0.0050 (8)
C7B0.0201 (11)0.0167 (10)0.0185 (11)−0.0011 (8)0.0058 (8)0.0015 (8)
C8B0.0244 (11)0.0194 (10)0.0199 (11)0.0057 (9)0.0097 (9)0.0024 (8)
N9B0.0221 (9)0.0173 (9)0.0190 (9)0.0003 (7)0.0073 (7)−0.0035 (7)
C10B0.0238 (11)0.0129 (9)0.0163 (10)−0.0031 (8)0.0069 (8)0.0035 (8)
O11B0.0286 (8)0.0196 (7)0.0223 (8)−0.0059 (6)0.0101 (6)−0.0058 (6)
C12B0.0207 (11)0.0150 (10)0.0176 (10)−0.0002 (8)0.0078 (8)0.0027 (8)
C13B0.0185 (10)0.0199 (11)0.0203 (11)−0.0004 (8)0.0049 (9)0.0009 (9)
C14B0.0279 (12)0.0228 (11)0.0192 (11)0.0012 (9)0.0072 (9)−0.0025 (9)
C15B0.0276 (12)0.0292 (12)0.0249 (12)0.0076 (9)0.0141 (10)0.0046 (9)
C16B0.0188 (11)0.0303 (12)0.0266 (12)0.0000 (9)0.0066 (9)0.0061 (10)
C17B0.0246 (11)0.0199 (10)0.0167 (10)−0.0035 (9)0.0055 (9)0.0026 (8)
O18B0.0227 (8)0.0306 (9)0.0264 (8)−0.0066 (7)0.0059 (7)−0.0073 (7)
B10.0174 (12)0.0237 (12)0.0298 (14)−0.0005 (10)0.0064 (10)−0.0023 (11)
F10.0297 (7)0.0263 (7)0.0266 (7)−0.0038 (5)0.0101 (6)−0.0054 (5)
F20.0290 (7)0.0260 (7)0.0259 (7)0.0064 (5)0.0106 (6)−0.0002 (5)
F30.0264 (7)0.0396 (8)0.0484 (9)0.0149 (6)0.0074 (6)0.0076 (7)
F40.0320 (8)0.0387 (8)0.0550 (9)−0.0173 (6)0.0147 (7)−0.0033 (7)

Geometric parameters (Å, °)

Cu1A—N1A1.8872 (16)N1B—C2B1.350 (2)
Cu1A—N1Ai1.8872 (16)N1B—C6B1.355 (2)
N1A—C2A1.344 (2)C2B—C3B1.368 (3)
N1A—C6A1.356 (2)C2B—H2B0.9500
C2A—C3A1.374 (3)C3B—C4B1.376 (3)
C2A—H2A0.9500C3B—H3B0.9500
C3A—C4A1.379 (3)C4B—C5B1.385 (3)
C3A—H3A0.9500C4B—H4B0.9500
C4A—C5A1.389 (3)C5B—C6B1.382 (3)
C4A—H4A0.9500C5B—H5B0.9500
C5A—C6A1.381 (3)C6B—C7B1.500 (3)
C5A—H5A0.9500C7B—C8B1.532 (3)
C6A—C7A1.499 (3)C7B—H7B10.9900
C7A—C8A1.528 (3)C7B—H7B20.9900
C7A—H7A10.9900C8B—N9B1.450 (2)
C7A—H7A20.9900C8B—H8B10.9900
C8A—N9A1.452 (2)C8B—H8B20.9900
C8A—H8A10.9900N9B—C10B1.330 (3)
C8A—H8A20.9900N9B—H9B0.815 (11)
N9A—C10A1.330 (3)C10B—O11B1.251 (2)
N9A—H9A0.72 (2)C10B—C12B1.487 (3)
C10A—O11A1.254 (2)C12B—C13B1.403 (3)
C10A—C12A1.483 (3)C12B—C17B1.405 (3)
C12A—C13A1.399 (3)C13B—C14B1.371 (3)
C12A—C17A1.408 (3)C13B—H13B0.9500
C13A—C14A1.378 (3)C14B—C15B1.396 (3)
C13A—H13A0.9500C14B—H14B0.9500
C14A—C15A1.390 (3)C15B—C16B1.373 (3)
C14A—H14A0.9500C15B—H15B0.9500
C15A—C16A1.376 (3)C16B—C17B1.395 (3)
C15A—H15A0.9500C16B—H16B0.9500
C16A—C17A1.388 (3)C17B—O18B1.354 (2)
C16A—H16A0.9500O18B—H18B0.805 (11)
C17A—O18A1.356 (2)B1—F31.373 (3)
O18A—H18A0.829 (12)B1—F41.374 (3)
Cu1B—N1B1.8874 (17)B1—F21.408 (3)
Cu1B—N1Bii1.8874 (17)B1—F11.410 (3)
N1A—Cu1A—N1Ai178.45 (9)C6B—N1B—Cu1B121.61 (13)
C2A—N1A—C6A118.45 (17)N1B—C2B—C3B123.2 (2)
C2A—N1A—Cu1A119.31 (13)N1B—C2B—H2B118.4
C6A—N1A—Cu1A121.37 (13)C3B—C2B—H2B118.4
N1A—C2A—C3A123.17 (18)C2B—C3B—C4B118.8 (2)
N1A—C2A—H2A118.4C2B—C3B—H3B120.6
C3A—C2A—H2A118.4C4B—C3B—H3B120.6
C2A—C3A—C4A118.61 (19)C3B—C4B—C5B118.9 (2)
C2A—C3A—H3A120.7C3B—C4B—H4B120.6
C4A—C3A—H3A120.7C5B—C4B—H4B120.6
C3A—C4A—C5A118.86 (19)C6B—C5B—C4B120.0 (2)
C3A—C4A—H4A120.6C6B—C5B—H5B120.0
C5A—C4A—H4A120.6C4B—C5B—H5B120.0
C6A—C5A—C4A119.89 (19)N1B—C6B—C5B120.84 (18)
C6A—C5A—H5A120.1N1B—C6B—C7B116.97 (17)
C4A—C5A—H5A120.1C5B—C6B—C7B122.11 (18)
N1A—C6A—C5A121.00 (18)C6B—C7B—C8B109.81 (16)
N1A—C6A—C7A116.95 (17)C6B—C7B—H7B1109.7
C5A—C6A—C7A122.00 (17)C8B—C7B—H7B1109.7
C6A—C7A—C8A110.51 (16)C6B—C7B—H7B2109.7
C6A—C7A—H7A1109.5C8B—C7B—H7B2109.7
C8A—C7A—H7A1109.5H7B1—C7B—H7B2108.2
C6A—C7A—H7A2109.5N9B—C8B—C7B113.13 (16)
C8A—C7A—H7A2109.5N9B—C8B—H8B1109.0
H7A1—C7A—H7A2108.1C7B—C8B—H8B1109.0
N9A—C8A—C7A113.27 (17)N9B—C8B—H8B2109.0
N9A—C8A—H8A1108.9C7B—C8B—H8B2109.0
C7A—C8A—H8A1108.9H8B1—C8B—H8B2107.8
N9A—C8A—H8A2108.9C10B—N9B—C8B121.34 (17)
C7A—C8A—H8A2108.9C10B—N9B—H9B119.9 (15)
H8A1—C8A—H8A2107.7C8B—N9B—H9B118.7 (15)
C10A—N9A—C8A121.77 (18)O11B—C10B—N9B120.18 (19)
C10A—N9A—H9A121.2 (19)O11B—C10B—C12B120.59 (18)
C8A—N9A—H9A117.0 (19)N9B—C10B—C12B119.21 (17)
O11A—C10A—N9A119.95 (18)C13B—C12B—C17B118.15 (18)
O11A—C10A—C12A120.69 (18)C13B—C12B—C10B122.59 (18)
N9A—C10A—C12A119.33 (18)C17B—C12B—C10B119.25 (18)
C13A—C12A—C17A117.85 (18)C14B—C13B—C12B121.41 (19)
C13A—C12A—C10A122.77 (18)C14B—C13B—H13B119.3
C17A—C12A—C10A119.37 (17)C12B—C13B—H13B119.3
C14A—C13A—C12A121.46 (19)C13B—C14B—C15B119.59 (19)
C14A—C13A—H13A119.3C13B—C14B—H14B120.2
C12A—C13A—H13A119.3C15B—C14B—H14B120.2
C13A—C14A—C15A119.71 (19)C16B—C15B—C14B120.5 (2)
C13A—C14A—H14A120.1C16B—C15B—H15B119.7
C15A—C14A—H14A120.1C14B—C15B—H15B119.7
C16A—C15A—C14A120.2 (2)C15B—C16B—C17B120.1 (2)
C16A—C15A—H15A119.9C15B—C16B—H16B120.0
C14A—C15A—H15A119.9C17B—C16B—H16B120.0
C15A—C16A—C17A120.4 (2)O18B—C17B—C16B117.34 (18)
C15A—C16A—H16A119.8O18B—C17B—C12B122.40 (18)
C17A—C16A—H16A119.8C16B—C17B—C12B120.26 (19)
O18A—C17A—C16A117.29 (19)C17B—O18B—H18B105.6 (17)
O18A—C17A—C12A122.33 (18)F3—B1—F4112.05 (19)
C16A—C17A—C12A120.38 (19)F3—B1—F2109.72 (19)
C17A—O18A—H18A105.4 (18)F4—B1—F2109.07 (18)
N1B—Cu1B—N1Bii177.71 (9)F3—B1—F1109.67 (19)
C2B—N1B—C6B118.27 (17)F4—B1—F1109.17 (19)
C2B—N1B—Cu1B119.44 (14)F2—B1—F1107.02 (17)
C6A—N1A—C2A—C3A−1.2 (3)C6B—N1B—C2B—C3B−0.1 (3)
Cu1A—N1A—C2A—C3A168.21 (15)Cu1B—N1B—C2B—C3B−170.83 (15)
N1A—C2A—C3A—C4A0.1 (3)N1B—C2B—C3B—C4B−0.5 (3)
C2A—C3A—C4A—C5A0.9 (3)C2B—C3B—C4B—C5B1.0 (3)
C3A—C4A—C5A—C6A−1.0 (3)C3B—C4B—C5B—C6B−0.8 (3)
C2A—N1A—C6A—C5A1.2 (3)C2B—N1B—C6B—C5B0.3 (3)
Cu1A—N1A—C6A—C5A−168.01 (14)Cu1B—N1B—C6B—C5B170.80 (14)
C2A—N1A—C6A—C7A−176.21 (17)C2B—N1B—C6B—C7B177.21 (16)
Cu1A—N1A—C6A—C7A14.6 (2)Cu1B—N1B—C6B—C7B−12.3 (2)
C4A—C5A—C6A—N1A−0.1 (3)C4B—C5B—C6B—N1B0.2 (3)
C4A—C5A—C6A—C7A177.15 (18)C4B—C5B—C6B—C7B−176.57 (18)
N1A—C6A—C7A—C8A74.4 (2)N1B—C6B—C7B—C8B−80.1 (2)
C5A—C6A—C7A—C8A−102.9 (2)C5B—C6B—C7B—C8B96.8 (2)
C6A—C7A—C8A—N9A−172.26 (17)C6B—C7B—C8B—N9B169.84 (16)
C7A—C8A—N9A—C10A82.1 (2)C7B—C8B—N9B—C10B−82.9 (2)
C8A—N9A—C10A—O11A−4.3 (3)C8B—N9B—C10B—O11B5.6 (3)
C8A—N9A—C10A—C12A173.60 (17)C8B—N9B—C10B—C12B−172.57 (16)
O11A—C10A—C12A—C13A175.99 (18)O11B—C10B—C12B—C13B−176.59 (18)
N9A—C10A—C12A—C13A−1.9 (3)N9B—C10B—C12B—C13B1.6 (3)
O11A—C10A—C12A—C17A−4.0 (3)O11B—C10B—C12B—C17B2.5 (3)
N9A—C10A—C12A—C17A178.11 (18)N9B—C10B—C12B—C17B−179.32 (18)
C17A—C12A—C13A—C14A0.5 (3)C17B—C12B—C13B—C14B0.1 (3)
C10A—C12A—C13A—C14A−179.47 (19)C10B—C12B—C13B—C14B179.18 (18)
C12A—C13A—C14A—C15A−0.7 (3)C12B—C13B—C14B—C15B0.0 (3)
C13A—C14A—C15A—C16A0.6 (3)C13B—C14B—C15B—C16B−0.5 (3)
C14A—C15A—C16A—C17A−0.2 (3)C14B—C15B—C16B—C17B0.8 (3)
C15A—C16A—C17A—O18A179.36 (19)C15B—C16B—C17B—O18B179.90 (18)
C15A—C16A—C17A—C12A0.0 (3)C15B—C16B—C17B—C12B−0.7 (3)
C13A—C12A—C17A—O18A−179.44 (18)C13B—C12B—C17B—O18B179.63 (18)
C10A—C12A—C17A—O18A0.5 (3)C10B—C12B—C17B—O18B0.5 (3)
C13A—C12A—C17A—C16A−0.1 (3)C13B—C12B—C17B—C16B0.2 (3)
C10A—C12A—C17A—C16A179.85 (18)C10B—C12B—C17B—C16B−178.91 (18)

Symmetry codes: (i) −x, y, −z+3/2; (ii) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N9A—H9A···F1iii0.72 (2)2.23 (2)2.923 (2)161 (2)
O18A—H18A···O11A0.83 (1)1.79 (2)2.554 (2)152 (3)
N9B—H9B···F2iv0.82 (1)2.16 (1)2.937 (2)159 (2)
O18B—H18B···O11B0.81 (1)1.81 (2)2.549 (2)153 (2)

Symmetry codes: (iii) x, −y, z+1/2; (iv) −x+1/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5166).

References

  • Bruker (2001). TWINABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Wang, Z. D., Powell, D. R. & Houser, R. P. (2009). Inorg. Chem. Commun.12, 511–514.
  • Yang, L., Powell, D. R. & Houser, R. P. (2007). Dalton Trans. pp. 955–964. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography