PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 February 1; 66(Pt 2): o405.
Published online 2010 January 20. doi:  10.1107/S1600536810001753
PMCID: PMC2979671

N,N′-Bis[4-(trifluoro­meth­yl)phen­yl]pyridine-2,6-dicarboxamide

Abstract

In the title mol­ecule, C21H13F6N3O2, the pyridine ring forms dihedral angles of 1.7 (1) and 5.2 (1)° with the two benzene rings. In the crystal structure, inter­molecular N—H(...)O hydrogen bonds and π(...)π inter­actions [centroid–centroid distance of 3.628 (3) Å between aromatic rings] link mol­ecules into stacks along the c axis. The two trifluoro­methyl groups are each rotationally disordered between two orientations, with occupancy ratios of 0.58 (1):0.42 (1) and 0.55 (1):0.45 (1).

Related literature

For the synthesis and biological activity of acyl thio­urea derivatives, see: Duan et al. (2003 [triangle]); Li et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0o405-scheme1.jpg

Experimental

Crystal data

  • C21H13F6N3O2
  • M r = 453.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0o405-efi1.jpg
  • a = 9.8308 (10) Å
  • b = 23.787 (3) Å
  • c = 8.9577 (10) Å
  • β = 109.474 (2)°
  • V = 1974.8 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.14 mm−1
  • T = 298 K
  • 0.20 × 0.12 × 0.10 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • 12033 measured reflections
  • 3653 independent reflections
  • 3138 reflections with I > 2σ(I)
  • R int = 0.043

Refinement

  • R[F 2 > 2σ(F 2)] = 0.078
  • wR(F 2) = 0.181
  • S = 1.17
  • 3653 reflections
  • 351 parameters
  • 96 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.32 e Å−3
  • Δρmin = −0.25 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810001753/cv2671sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810001753/cv2671Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the financial support of this work by the Opening Foundation of the Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University (grant No. 2009GDGP0101), the National Basic Research Program of China (2010CB126100) and the National Natural Science Foundation of China (No. 20772042).

supplementary crystallographic information

Comment

Acyl thiourea derivatives have attracted considerable attention from chemists and biologists because of their wide range of biological activities and potential therapeutic value (Duan et al., 2003; Li et al., 2007). In our research work aimed at searching for novel agrochemicals, we attempted to synthesize the pyridine-2,6-dicarbonyl thiourea derivatives,and the title compound, (I), was obtained as byproduct. Here we report its crystal structure.

In (I) (Fig.1), the central pyridine ring makes the dihedral angles of 1.7 (1) and 5.2 (1)° with the two benzene rings, respectively. In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) and π–π interactions proved by short distance of 3.628 (3) Å between the centroids of aromatic rings link molecules into stacks along axis c.

Experimental

Pyridine-2,6-dicarbonyl chloride (II) was prepared according to the literature procedures (Duan et al., 2003). To a solution of (II) (5 mmol) in dichloromethane (30 ml) was added KSCN (15 mmol) and PEG-400 (0.2 g). The mixture was stirred at room temperature for 2 h, then 4-trifluoroaniline (10 mmol) was added and the suspension was stirred for 1 h. The mixture was filtered and the precipitate was washed with a little ethanol. The solvent was removed under reduced pressure and the residue was purified by recrystallization from DMF and water (20:1,v/v). Then recrystallization from actone over a period of one week gave colourless crystals of (I).

Refinement

C-bound H atoms were geometrically positioned (C—H 0.93 Å) and refined as riding, with Uiso(H) =1.2Ueq(C). H atoms bonded to N atoms were located at the difference map, and refined with bond restrains N—H = 0.84 (3) Å, and with constrains of Uiso(H) = 1.2Ueq(N). Two trifluoromethyl groups were treated as rotationally disordered between two orientations each with the ratios refined to 0.58 (1):0.42 (1) and 0.55 (1):0.45 (1), respectively.

Figures

Fig. 1.
Molecular structure of (I), showing the labeling scheme with 50% probability displacement ellipsoids. Only major parts of disordered fluorine atoms are shown.
Fig. 2.
Part of the crystal packing, showing the intermolecular hydrogen bonds as dashed lines.

Crystal data

C21H13F6N3O2F(000) = 920
Mr = 453.34Dx = 1.525 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3607 reflections
a = 9.8308 (10) Åθ = 2.4–25.0°
b = 23.787 (3) ŵ = 0.14 mm1
c = 8.9577 (10) ÅT = 298 K
β = 109.474 (2)°Block, colourless
V = 1974.8 (4) Å30.20 × 0.12 × 0.10 mm
Z = 4

Data collection

Bruker SMART CCD area-detector diffractometer3138 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.043
graphiteθmax = 25.5°, θmin = 2.2°
phi and ω scansh = −11→11
12033 measured reflectionsk = −28→22
3653 independent reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.078Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.181H atoms treated by a mixture of independent and constrained refinement
S = 1.17w = 1/[σ2(Fo2) + (0.0634P)2 + 1.4024P] where P = (Fo2 + 2Fc2)/3
3653 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.32 e Å3
96 restraintsΔρmin = −0.25 e Å3

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
C10.1924 (3)0.17950 (12)0.0978 (3)0.0384 (7)
C20.1982 (4)0.12169 (14)0.1004 (4)0.0491 (8)
H20.14470.10090.14920.059*
C30.2849 (4)0.09535 (14)0.0289 (4)0.0557 (9)
H30.29020.05630.02820.067*
C40.3637 (3)0.12687 (13)−0.0413 (4)0.0461 (8)
H40.42180.1097−0.09140.055*
C50.3546 (3)0.18462 (12)−0.0356 (3)0.0356 (6)
C60.0990 (3)0.21071 (13)0.1728 (3)0.0400 (7)
C7−0.0025 (3)0.30625 (13)0.1730 (3)0.0394 (7)
C8−0.1031 (3)0.29432 (15)0.2475 (4)0.0498 (8)
H8−0.12440.25730.26430.060*
C9−0.1704 (3)0.33774 (17)0.2959 (4)0.0581 (9)
H9−0.23730.32980.34580.070*
C10−0.1409 (3)0.39243 (16)0.2721 (4)0.0565 (9)
C11−0.0435 (4)0.40445 (15)0.1948 (5)0.0620 (10)
H11−0.02360.44160.17720.074*
C120.0234 (4)0.36158 (14)0.1444 (4)0.0535 (9)
H120.08690.36980.09040.064*
C13−0.2060 (4)0.4394 (2)0.3348 (5)0.0853 (14)
C140.4430 (3)0.22150 (13)−0.1048 (3)0.0377 (7)
C150.5242 (3)0.32122 (13)−0.0892 (3)0.0400 (7)
C160.4878 (4)0.37330 (15)−0.0475 (4)0.0564 (9)
H160.42150.37600.00570.068*
C170.5477 (4)0.42116 (16)−0.0833 (5)0.0661 (10)
H170.52000.4561−0.05670.079*
C180.6488 (4)0.41772 (16)−0.1585 (4)0.0599 (10)
C190.6873 (4)0.36594 (17)−0.1989 (4)0.0620 (10)
H190.75600.3635−0.24920.074*
C200.6258 (3)0.31734 (15)−0.1662 (4)0.0491 (8)
H200.65180.2825−0.19520.059*
C210.7100 (6)0.4701 (2)−0.2000 (5)0.0930 (16)
N10.2702 (2)0.21094 (10)0.0320 (3)0.0357 (6)
N20.0727 (3)0.26423 (11)0.1232 (3)0.0430 (6)
H2A0.110 (4)0.2753 (14)0.057 (4)0.052*
N30.4573 (3)0.27437 (11)−0.0487 (3)0.0442 (7)
H3A0.420 (4)0.2803 (14)0.022 (4)0.053*
O10.0553 (3)0.18852 (10)0.2706 (3)0.0663 (7)
O20.4942 (3)0.20366 (10)−0.2017 (3)0.0566 (7)
F1−0.3471 (7)0.4321 (5)0.3055 (10)0.104 (3)0.55 (1)
F2−0.1415 (10)0.4449 (5)0.4902 (8)0.130 (4)0.55 (1)
F3−0.1944 (10)0.4899 (3)0.2690 (12)0.127 (4)0.55 (1)
F40.7508 (11)0.5071 (4)−0.0789 (9)0.143 (4)0.58 (1)
F50.6273 (14)0.4946 (5)−0.3320 (9)0.122 (4)0.58 (1)
F60.8385 (8)0.4579 (5)−0.2243 (14)0.133 (4)0.58 (1)
F4'0.8527 (8)0.4711 (6)−0.1667 (18)0.119 (5)0.45 (1)
F1'−0.3145 (10)0.4220 (6)0.3872 (14)0.130 (5)0.45 (1)
F5'0.6697 (11)0.5178 (4)−0.1386 (12)0.109 (3)0.45 (1)
F3'−0.1123 (11)0.4662 (5)0.4586 (11)0.088 (3)0.42 (1)
F2'−0.2616 (11)0.4801 (5)0.2255 (12)0.110 (4)0.42 (1)
F6'0.6506 (17)0.4783 (6)−0.3602 (9)0.102 (4)0.42 (1)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0394 (16)0.0387 (17)0.0408 (16)−0.0035 (12)0.0182 (13)−0.0019 (13)
C20.0565 (19)0.0434 (19)0.0562 (19)−0.0060 (15)0.0305 (16)−0.0004 (15)
C30.073 (2)0.0319 (17)0.072 (2)0.0011 (15)0.038 (2)−0.0021 (16)
C40.0534 (18)0.0430 (18)0.0489 (18)0.0050 (14)0.0265 (15)−0.0026 (14)
C50.0329 (14)0.0392 (16)0.0366 (15)0.0050 (12)0.0141 (12)0.0006 (12)
C60.0395 (16)0.0422 (18)0.0456 (17)−0.0055 (13)0.0240 (14)−0.0025 (13)
C70.0328 (15)0.0467 (18)0.0411 (16)0.0030 (13)0.0156 (13)−0.0040 (13)
C80.0390 (17)0.055 (2)0.063 (2)0.0000 (15)0.0275 (16)−0.0046 (16)
C90.0402 (18)0.079 (3)0.065 (2)0.0021 (17)0.0302 (17)−0.0110 (19)
C100.0404 (18)0.064 (2)0.066 (2)0.0063 (16)0.0181 (16)−0.0184 (18)
C110.053 (2)0.048 (2)0.089 (3)0.0048 (16)0.029 (2)−0.0085 (19)
C120.0492 (19)0.050 (2)0.071 (2)0.0047 (15)0.0340 (17)0.0023 (17)
C130.063 (3)0.097 (4)0.100 (4)0.010 (3)0.033 (3)−0.036 (3)
C140.0383 (15)0.0421 (17)0.0366 (15)0.0093 (12)0.0176 (13)0.0027 (13)
C150.0410 (16)0.0450 (18)0.0356 (15)−0.0033 (13)0.0148 (13)0.0016 (13)
C160.065 (2)0.052 (2)0.064 (2)−0.0091 (17)0.0378 (19)−0.0066 (17)
C170.084 (3)0.047 (2)0.076 (3)−0.0112 (19)0.039 (2)−0.0073 (18)
C180.069 (2)0.060 (2)0.051 (2)−0.0187 (18)0.0202 (18)0.0026 (17)
C190.062 (2)0.077 (3)0.059 (2)−0.0150 (19)0.0363 (19)0.0027 (19)
C200.0469 (18)0.054 (2)0.0533 (19)−0.0017 (15)0.0264 (16)0.0008 (16)
C210.127 (5)0.078 (4)0.087 (4)−0.039 (3)0.053 (4)0.003 (3)
N10.0353 (12)0.0357 (13)0.0395 (13)0.0021 (10)0.0172 (10)0.0003 (10)
N20.0471 (15)0.0428 (16)0.0516 (15)0.0024 (11)0.0330 (13)0.0022 (12)
N30.0548 (16)0.0436 (15)0.0489 (15)−0.0040 (12)0.0371 (13)−0.0027 (12)
O10.0879 (18)0.0535 (15)0.0839 (18)0.0034 (13)0.0640 (16)0.0105 (13)
O20.0733 (16)0.0520 (14)0.0635 (15)0.0044 (12)0.0482 (13)−0.0026 (11)
F10.063 (4)0.126 (6)0.131 (6)0.029 (4)0.044 (4)−0.042 (5)
F20.124 (7)0.159 (10)0.107 (5)0.023 (5)0.040 (5)−0.073 (5)
F30.128 (8)0.071 (4)0.203 (11)0.015 (5)0.084 (7)−0.041 (6)
F40.209 (10)0.102 (6)0.134 (6)−0.089 (6)0.078 (7)−0.024 (5)
F50.175 (7)0.070 (7)0.137 (7)−0.004 (4)0.072 (6)0.036 (5)
F60.147 (7)0.129 (8)0.147 (8)−0.095 (5)0.081 (5)−0.024 (5)
F4'0.115 (7)0.088 (7)0.157 (11)−0.060 (5)0.049 (6)−0.004 (7)
F1'0.091 (7)0.134 (9)0.197 (12)−0.011 (6)0.092 (7)−0.084 (9)
F5'0.168 (9)0.055 (4)0.127 (7)−0.043 (5)0.082 (7)−0.019 (5)
F3'0.071 (4)0.078 (6)0.111 (7)0.003 (4)0.024 (5)−0.050 (4)
F2'0.097 (8)0.094 (8)0.118 (6)0.052 (6)0.007 (6)−0.025 (6)
F6'0.171 (10)0.067 (8)0.090 (6)−0.008 (5)0.075 (6)0.022 (4)

Geometric parameters (Å, °)

C1—N11.339 (4)C13—F3'1.342 (8)
C1—C21.376 (4)C13—F2'1.355 (8)
C1—C61.502 (4)C13—F31.358 (7)
C2—C31.376 (4)C13—F1'1.365 (8)
C2—H20.9300C14—O21.216 (3)
C3—C41.372 (4)C14—N31.344 (4)
C3—H30.9300C15—C161.375 (5)
C4—C51.379 (4)C15—C201.393 (4)
C4—H40.9300C15—N31.402 (4)
C5—N11.335 (3)C16—C171.368 (5)
C5—C141.506 (4)C16—H160.9300
C6—O11.217 (3)C17—C181.377 (5)
C6—N21.345 (4)C17—H170.9300
C7—C121.381 (5)C18—C191.372 (5)
C7—C81.394 (4)C18—C211.484 (5)
C7—N21.402 (4)C19—C201.380 (5)
C8—C91.373 (5)C19—H190.9300
C8—H80.9300C20—H200.9300
C9—C101.365 (5)C21—F51.326 (8)
C9—H90.9300C21—F4'1.334 (8)
C10—C111.386 (5)C21—F41.350 (7)
C10—C131.488 (5)C21—F6'1.371 (8)
C11—C121.369 (5)C21—F5'1.375 (8)
C11—H110.9300C21—F61.383 (8)
C12—H120.9300N2—H2A0.84 (3)
C13—F21.330 (7)N3—H3A0.85 (4)
C13—F11.335 (7)
N1—C1—C2122.6 (3)F3'—C13—C10113.9 (6)
N1—C1—C6116.4 (2)F2'—C13—C10112.7 (7)
C2—C1—C6120.9 (3)F3—C13—C10113.1 (6)
C1—C2—C3118.4 (3)F1'—C13—C10112.7 (7)
C1—C2—H2120.8O2—C14—N3125.2 (3)
C3—C2—H2120.8O2—C14—C5121.6 (3)
C4—C3—C2119.8 (3)N3—C14—C5113.2 (2)
C4—C3—H3120.1C16—C15—C20119.2 (3)
C2—C3—H3120.1C16—C15—N3117.3 (3)
C3—C4—C5118.3 (3)C20—C15—N3123.5 (3)
C3—C4—H4120.8C17—C16—C15121.0 (3)
C5—C4—H4120.8C17—C16—H16119.5
N1—C5—C4122.8 (3)C15—C16—H16119.5
N1—C5—C14116.4 (2)C16—C17—C18120.2 (4)
C4—C5—C14120.8 (3)C16—C17—H17119.9
O1—C6—N2125.0 (3)C18—C17—H17119.9
O1—C6—C1121.5 (3)C19—C18—C17119.3 (3)
N2—C6—C1113.5 (2)C19—C18—C21121.2 (4)
C12—C7—C8119.1 (3)C17—C18—C21119.4 (4)
C12—C7—N2118.1 (3)C18—C19—C20121.1 (3)
C8—C7—N2122.7 (3)C18—C19—H19119.4
C9—C8—C7119.5 (3)C20—C19—H19119.4
C9—C8—H8120.3C19—C20—C15119.1 (3)
C7—C8—H8120.3C19—C20—H20120.4
C10—C9—C8121.2 (3)C15—C20—H20120.4
C10—C9—H9119.4F5—C21—F4'118.5 (12)
C8—C9—H9119.4F5—C21—F4111.1 (7)
C9—C10—C11119.6 (3)F4'—C21—F478.5 (7)
C9—C10—C13121.1 (3)F5—C21—F6'23.6 (8)
C11—C10—C13119.3 (4)F4'—C21—F6'106.3 (8)
C12—C11—C10119.9 (3)F4—C21—F6'131.1 (9)
C12—C11—H11120.0F5—C21—F5'79.7 (7)
C10—C11—H11120.0F4'—C21—F5'108.5 (7)
C11—C12—C7120.7 (3)F4—C21—F5'35.8 (6)
C11—C12—H12119.7F6'—C21—F5'102.9 (7)
C7—C12—H12119.7F5—C21—F6105.8 (7)
F2—C13—F1108.7 (6)F4'—C21—F624.6 (7)
F2—C13—F3'29.8 (7)F4—C21—F6102.8 (6)
F1—C13—F3'127.3 (8)F6'—C21—F687.6 (10)
F2—C13—F2'128.5 (8)F5'—C21—F6129.5 (7)
F1—C13—F2'79.0 (7)F5—C21—C18114.4 (8)
F3'—C13—F2'105.0 (7)F4'—C21—C18116.3 (8)
F2—C13—F3106.7 (6)F4—C21—C18112.5 (6)
F1—C13—F3105.2 (6)F6'—C21—C18108.3 (8)
F3'—C13—F378.8 (7)F5'—C21—C18113.5 (6)
F2'—C13—F329.3 (5)F6—C21—C18109.3 (6)
F2—C13—F1'79.9 (7)C5—N1—C1118.1 (2)
F1—C13—F1'31.5 (6)C6—N2—C7129.3 (3)
F3'—C13—F1'105.0 (7)C6—N2—H2A117 (2)
F2'—C13—F1'106.9 (7)C7—N2—H2A114 (2)
F3—C13—F1'127.2 (8)C14—N3—C15130.2 (3)
F2—C13—C10110.7 (6)C14—N3—H3A115 (2)
F1—C13—C10112.1 (6)C15—N3—H3A115 (2)
N1—C1—C2—C3−1.6 (5)C4—C5—C14—N3−160.5 (3)
C6—C1—C2—C3179.6 (3)C20—C15—C16—C171.3 (5)
C1—C2—C3—C40.5 (5)N3—C15—C16—C17−179.7 (3)
C2—C3—C4—C50.9 (5)C15—C16—C17—C18−1.7 (6)
C3—C4—C5—N1−1.5 (5)C16—C17—C18—C190.9 (6)
C3—C4—C5—C14177.6 (3)C16—C17—C18—C21178.5 (4)
N1—C1—C6—O1−159.9 (3)C17—C18—C19—C200.3 (6)
C2—C1—C6—O119.0 (5)C21—C18—C19—C20−177.2 (4)
N1—C1—C6—N218.9 (4)C18—C19—C20—C15−0.7 (5)
C2—C1—C6—N2−162.2 (3)C16—C15—C20—C190.0 (5)
C12—C7—C8—C9−2.3 (5)N3—C15—C20—C19−179.0 (3)
N2—C7—C8—C9178.7 (3)C19—C18—C21—F596.4 (7)
C7—C8—C9—C100.1 (5)C17—C18—C21—F5−81.2 (7)
C8—C9—C10—C111.3 (5)C19—C18—C21—F4'−47.7 (8)
C8—C9—C10—C13−175.6 (3)C17—C18—C21—F4'134.7 (8)
C9—C10—C11—C12−0.6 (5)C19—C18—C21—F4−135.6 (6)
C13—C10—C11—C12176.3 (4)C17—C18—C21—F446.8 (7)
C10—C11—C12—C7−1.5 (5)C19—C18—C21—F6'71.8 (8)
C8—C7—C12—C113.0 (5)C17—C18—C21—F6'−105.7 (7)
N2—C7—C12—C11−178.0 (3)C19—C18—C21—F5'−174.6 (6)
C9—C10—C13—F275.5 (6)C17—C18—C21—F5'7.8 (7)
C11—C10—C13—F2−101.4 (6)C19—C18—C21—F6−22.1 (7)
C9—C10—C13—F1−46.1 (7)C17—C18—C21—F6160.3 (6)
C11—C10—C13—F1137.0 (6)C4—C5—N1—C10.6 (4)
C9—C10—C13—F3'107.6 (7)C14—C5—N1—C1−178.6 (2)
C11—C10—C13—F3'−69.4 (7)C2—C1—N1—C51.0 (4)
C9—C10—C13—F2'−133.0 (6)C6—C1—N1—C5179.9 (2)
C11—C10—C13—F2'50.1 (7)O1—C6—N2—C72.6 (5)
C9—C10—C13—F3−164.8 (6)C1—C6—N2—C7−176.2 (3)
C11—C10—C13—F318.2 (7)C12—C7—N2—C6159.3 (3)
C9—C10—C13—F1'−11.9 (7)C8—C7—N2—C6−21.7 (5)
C11—C10—C13—F1'171.2 (6)O2—C14—N3—C153.4 (5)
N1—C5—C14—O2−161.2 (3)C5—C14—N3—C15−176.4 (3)
C4—C5—C14—O219.7 (4)C16—C15—N3—C14161.7 (3)
N1—C5—C14—N318.6 (4)C20—C15—N3—C14−19.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.84 (3)2.58 (3)3.303 (4)144 (3)
N3—H3A···O2ii0.85 (4)2.36 (4)3.051 (3)139 (3)

Symmetry codes: (i) x, −y+1/2, z−1/2; (ii) x, −y+1/2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2671).

References

  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Duan, Z. F., Gu, L. Q., Huang, Z. S., Xie, W. L. & Ma, L. (2003). Chin. J. Appl. Chem.20, 80–82.
  • Li, Y. J., Zhang, Z. G., Jin, K., Peng, Q. J., Ding, W. G. & Liu, J. (2007). Acta Chim. Sin.65, 834–840.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography