PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1403.
Published online 2010 May 22. doi:  10.1107/S1600536810018076
PMCID: PMC2979662

4-(Cyano­meth­yl)anilinium chloride

Abstract

The crystal structure of the title compound, C8H9N2 +·Cl, is stabilized by N—H(...)Cl hydrogen bonds.

Related literature

For background to phase transition materials, see: Li et al. (2008 [triangle]); Zhang et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1403-scheme1.jpg

Experimental

Crystal data

  • C8H9N2 +·Cl
  • M r = 168.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1403-efi1.jpg
  • a = 5.4348 (12) Å
  • b = 8.5630 (18) Å
  • c = 18.000 (4) Å
  • β = 93.734 (16)°
  • V = 835.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.39 mm−1
  • T = 293 K
  • 0.45 × 0.28 × 0.25 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.5, T max = 0.5
  • 8241 measured reflections
  • 1890 independent reflections
  • 1593 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.139
  • S = 1.18
  • 1890 reflections
  • 101 parameters
  • H-atom parameters constrained
  • Δρmax = 0.50 e Å−3
  • Δρmin = −0.54 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018076/jh2157sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018076/jh2157Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

supplementary crystallographic information

Comment

Most non-hydrogen atoms of the 4-(cyanomethyl)anilinium were coplanar, with the mean deviation from plane of 0.0320 and N2—C8—C7—C4 torsion angle of 114 (37)°. The strong π-π packing interactions of benzene rings with Cg(1)···Cg(1) of 3.487 Å (Cg(1) is the centroid of benzene ring) stabilized the crystal structure. The N—H···Cl hydrogen bonding with the N···Cl distances from 3.1638 (17) Å to 3.2061 (17) Å link the molecules into infinite two-dimensional plane.

As a continuation of our study of phase transition materials, including organic ligands (Li et al., 2008), metal-organic coordination compounds (Zhang et al., 2009 ),the dielectric constant of 4-(cyanomethyl)anilinium chloride compound as a function of temperature indicates that the permittivity is basically temperature-independent (dielectric constant equaling to 5.3 to 21.1), suggesting that this compound should be not a real ferroelectrics or there may be no distinct phase transition occurred within the measured temperature range.

Experimental

Single crystals (average size: 0.7×0.8×1.0 mm) of 4-(cyanomethyl)anilinium chloride were prepared by slowevaporation at room temperature of an ethanol solution of equal molar for 4 days.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C and N atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C),Uiso(H) = 1.5Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the packing of the title compound, stacking along the a axis. Dashed lines indicate hydrogen bonds.

Crystal data

C8H9N2+·ClF(000) = 352
Mr = 168.62Dx = 1.340 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2330 reflections
a = 5.4348 (12) Åθ = 3.2–27.6°
b = 8.5630 (18) ŵ = 0.39 mm1
c = 18.000 (4) ÅT = 293 K
β = 93.734 (16)°Prism, orange
V = 835.9 (3) Å30.45 × 0.28 × 0.25 mm
Z = 4

Data collection

Rigaku SCXmini diffractometer1890 independent reflections
Radiation source: fine-focus sealed tube1593 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 2.3°
CCD_Profile_fitting scansh = −7→7
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −11→11
Tmin = 0.5, Tmax = 0.5l = −23→23
8241 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.139H-atom parameters constrained
S = 1.18w = 1/[σ2(Fo2) + (0.0842P)2] where P = (Fo2 + 2Fc2)/3
1890 reflections(Δ/σ)max < 0.001
101 parametersΔρmax = 0.50 e Å3
0 restraintsΔρmin = −0.54 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.4618 (3)0.31846 (19)0.11664 (9)0.0300 (4)
C20.2846 (3)0.3656 (2)0.06362 (11)0.0392 (4)
H20.15270.42660.07680.047*
C30.3045 (3)0.3213 (2)−0.00980 (11)0.0399 (5)
H30.18460.3524−0.04600.048*
C40.5017 (3)0.2308 (2)−0.02981 (9)0.0318 (4)
C50.6768 (3)0.1847 (2)0.02470 (10)0.0381 (4)
H50.80870.12330.01190.046*
C60.6587 (3)0.2288 (2)0.09839 (10)0.0375 (4)
H60.77800.19810.13480.045*
C70.5134 (4)0.1847 (3)−0.11122 (11)0.0424 (5)
H7A0.37170.1201−0.12570.051*
H7B0.50310.2784−0.14160.051*
C80.7369 (4)0.1002 (2)−0.12648 (10)0.0380 (4)
N10.4471 (3)0.36295 (19)0.19498 (8)0.0339 (4)
H1A0.30560.41260.20050.051*
H1B0.57270.42560.20870.051*
H1C0.45410.27760.22330.051*
N20.9120 (4)0.0349 (3)−0.13867 (12)0.0593 (6)
Cl10.94611 (8)0.55382 (5)0.21151 (3)0.0395 (2)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0310 (9)0.0303 (8)0.0290 (8)−0.0016 (7)0.0037 (7)0.0014 (7)
C20.0324 (9)0.0462 (11)0.0391 (10)0.0129 (8)0.0023 (7)−0.0008 (8)
C30.0344 (10)0.0505 (11)0.0339 (10)0.0123 (8)−0.0045 (7)0.0023 (8)
C40.0309 (9)0.0335 (9)0.0310 (9)0.0017 (7)0.0011 (7)0.0010 (7)
C50.0318 (9)0.0460 (11)0.0362 (10)0.0116 (8)0.0005 (7)−0.0027 (8)
C60.0324 (9)0.0471 (10)0.0322 (9)0.0095 (8)−0.0030 (7)0.0022 (8)
C70.0409 (11)0.0528 (12)0.0327 (10)0.0119 (9)−0.0024 (8)−0.0024 (8)
C80.0395 (11)0.0464 (10)0.0279 (9)0.0031 (9)0.0011 (7)0.0002 (8)
N10.0347 (8)0.0367 (8)0.0305 (8)0.0031 (6)0.0034 (6)0.0007 (6)
N20.0484 (12)0.0836 (15)0.0463 (11)0.0210 (10)0.0059 (9)−0.0014 (10)
Cl10.0360 (3)0.0418 (3)0.0404 (3)0.00352 (17)−0.0006 (2)−0.00759 (18)

Geometric parameters (Å, °)

C1—C21.372 (3)C5—H50.9300
C1—C61.374 (2)C6—H60.9300
C1—N11.468 (2)C7—C81.455 (3)
C2—C31.386 (3)C7—H7A0.9700
C2—H20.9300C7—H7B0.9700
C3—C41.389 (2)C8—N21.137 (3)
C3—H30.9300N1—H1A0.8900
C4—C51.380 (3)N1—H1B0.8900
C4—C71.523 (3)N1—H1C0.8900
C5—C61.389 (3)
C2—C1—C6121.37 (16)C1—C6—H6120.5
C2—C1—N1120.80 (16)C5—C6—H6120.5
C6—C1—N1117.82 (16)C8—C7—C4113.47 (16)
C1—C2—C3119.20 (16)C8—C7—H7A108.9
C1—C2—H2120.4C4—C7—H7A108.9
C3—C2—H2120.4C8—C7—H7B108.9
C2—C3—C4120.63 (17)C4—C7—H7B108.9
C2—C3—H3119.7H7A—C7—H7B107.7
C4—C3—H3119.7N2—C8—C7179.6 (3)
C5—C4—C3118.92 (16)C1—N1—H1A109.5
C5—C4—C7122.68 (16)C1—N1—H1B109.5
C3—C4—C7118.39 (16)H1A—N1—H1B109.5
C4—C5—C6120.85 (17)C1—N1—H1C109.5
C4—C5—H5119.6H1A—N1—H1C109.5
C6—C5—H5119.6H1B—N1—H1C109.5
C1—C6—C5119.02 (17)
C6—C1—C2—C30.2 (3)C2—C1—C6—C5−0.3 (3)
N1—C1—C2—C3−179.95 (17)N1—C1—C6—C5179.84 (17)
C1—C2—C3—C4−0.3 (3)C4—C5—C6—C10.5 (3)
C2—C3—C4—C50.5 (3)C5—C4—C7—C8−5.2 (3)
C2—C3—C4—C7179.66 (19)C3—C4—C7—C8175.67 (19)
C3—C4—C5—C6−0.6 (3)C4—C7—C8—N2−114 (37)
C7—C4—C5—C6−179.74 (18)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···Cl10.892.313.1638 (17)162
N1—H1A···Cl1i0.892.323.2061 (16)177
N1—H1C···Cl1ii0.892.293.1700 (17)168

Symmetry codes: (i) x−1, y, z; (ii) −x+3/2, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2157).

References

  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Li, X. Z., Qu, Z. R. & Xiong, R. G. (2008). Chin. J. Chem.11, 1959–1962
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhang, W., Chen, L. Z., Xiong, R. G., Nakamura, T. & Huang, S. D. (2009). J. Am. Chem. Soc.131, 12544–12545 [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography