PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1515.
Published online 2010 May 29. doi:  10.1107/S1600536810016351
PMCID: PMC2979661

N-(2-Pyridylmethanimidamido)pyridine-2-carboximidamide

Abstract

In the title mol­ecule, C12H12N6, the dihedral angles between the pyridine rings and the central dimethan­imine–hydrazine group are 0.30 (3) and 13.94 (3)°. Two intra­molecular N—H(...)N hydrogen bonds stabilize the planar conformation of one pyridine ring with respect to its hydrazine-residue neighbour, whereas the other pyridine ring and an N-bonded H atom are rotated out of the plane and link the mol­ecules into inter­molecular N—H(...)N chains propagating in [010].

Related literature

For the phase transition of pyridinium tetra­chloro­iodate(III) studied by X-ray analysis and dielectric and heat capacity measurements, see: Asaji et al. (2007 [triangle]). For the synthesis of 2-pyridylpyridines via Diels–Alder reactions between 3-pyridyl-1,2,4-triazines and vinyl­alcanoates, see: Shintou et al. (2005 [triangle]). For the ferroelecric properties of pyridinum perrhenate, see: Wasicki et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1515-scheme1.jpg

Experimental

Crystal data

  • C12H12N6
  • M r = 240.28
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1515-efi1.jpg
  • a = 13.218 (3) Å
  • b = 9.4979 (19) Å
  • c = 19.811 (4) Å
  • V = 2487.2 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Rigaku SCXmini diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.5, T max = 0.5
  • 23997 measured reflections
  • 2848 independent reflections
  • 1934 reflections with I > 2σ(I)
  • R int = 0.075

Refinement

  • R[F 2 > 2σ(F 2)] = 0.073
  • wR(F 2) = 0.222
  • S = 1.09
  • 2848 reflections
  • 168 parameters
  • 2 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.46 e Å−3
  • Δρmin = −0.67 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: PRPKAPPA (Ferguson, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016351/si2254sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016351/si2254Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author is grateful to the starter fund of Southeast University for financial support to buy the X-ray diffractometer.

supplementary crystallographic information

Comment

The study of seignette-electrics materials has received much attention. Some materials have predominant dielectric-ferroelectric performance. The study of phase transition and related dielectric-ferroelectric property about PyHX (X=ICl4, ClO4, IO4, ReO4etc) (Asaji et al. (2007); Wasicki et al. (1997)) has received much attention. As one part of our continuing studies on finding for dielectric-ferroelectric materials, especially which contain N—H···N hydrogen bonds, we synthesized the title compound C12H12N6(I). It has no phase-transition in dielectric measurement during 93 K to 425 K (m.p 458 K).

The compound contains approximate non-crystallographic inversion symmetry (Fig 1). The torsion angles of N2—C6—C5—N1 and N4—N3—C6—C5 are 3.3 (3)° and 179.12 (19)°, N3—C6—C5—N1 and N4—N3—C6—N2 are -176.7 (2)° and -0.9 (4)°, C7—N4—N3—C6 is 174.0 (2)°. H5 rotates out of the molecular plane to prevent collision with the H4B of the intermolecular hydrogen N4—H4B···N5i bond. Two intramolecular hydrogen bonds (N2—H2B···N1 and N4—H4B···N2) contribute to the planar conformation of the N1 pyridine with the dimethanimine-hydrazine group. The other pyridine unit rotates out of the central hydrazine by 13.94 (3)° because N5—H5···N6 intramolecular bond is not realized. The intermolecular hydrogen bonds (N4—H4B···N5i, Table 1) link the molecules into chains along the b-axis (Fig 2).

Experimental

Picolinonitrile 5.2 g (100 mmol) and hydrazine hydrate 2.94 g (85%, 100 mmol) in flask and water (75 ml) was added, then the reagent react at 50°C for 24 h (Shintou et al.(2005)). The reaction solution was extracted by dichloromethane, and the solvate was removed under reduced pressure and the product was obtained as yellow solid. The crystals suitable for structure determination were grown by slow evaporation in dichloromethane and methanol (1: 1) at room temperature.

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C atoms to which they are bonded,with C—H = 0.93Å , N—H = 0.75-0.86 Å; with Uiso(H) = 1.2Ueq(C), and with Uiso(H) = 1.2-1.5Ueq(N).

Figures

Fig. 1.
The molecular structure of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the packing of the title compound, stacking along the c axis. Dashed lines indicate hydrogen bonds.

Crystal data

C12H12N6F(000) = 1008
Mr = 240.28Dx = 1.283 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 8973 reflections
a = 13.218 (3) Åθ = 3.0–8973°
b = 9.4979 (19) ŵ = 0.09 mm1
c = 19.811 (4) ÅT = 293 K
V = 2487.2 (9) Å3Prism, colorless
Z = 80.20 × 0.20 × 0.20 mm

Data collection

Rigaku SCXmini diffractometer2848 independent reflections
Radiation source: fine-focus sealed tube1934 reflections with I > 2σ(I)
graphiteRint = 0.075
Detector resolution: 13.6612 pixels mm-1θmax = 27.5°, θmin = 3.1°
ω scansh = −17→17
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)k = −12→12
Tmin = 0.5, Tmax = 0.5l = −25→25
23997 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.073Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.1052P)2 + 1.2299P] where P = (Fo2 + 2Fc2)/3
2848 reflections(Δ/σ)max < 0.001
168 parametersΔρmax = 0.46 e Å3
2 restraintsΔρmin = −0.67 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N40.15435 (14)0.0172 (2)0.56008 (10)0.0402 (5)
H4B0.1516−0.06180.53900.048*
N30.09172 (14)0.0508 (2)0.61420 (10)0.0411 (5)
H3B0.09790.12630.63790.049*
C60.02347 (17)−0.0432 (2)0.62501 (12)0.0397 (6)
C70.21721 (16)0.1167 (2)0.54472 (12)0.0361 (5)
C80.28736 (18)0.0908 (2)0.48714 (12)0.0408 (6)
C5−0.04819 (17)−0.0210 (3)0.68259 (13)0.0421 (6)
C4−0.0456 (2)0.0985 (3)0.72202 (14)0.0501 (7)
H4A0.00190.16870.71380.060*
N50.22387 (18)0.2410 (2)0.57686 (13)0.0556 (7)
H50.22210.22900.61430.083*
N60.36735 (17)0.1762 (2)0.48319 (13)0.0570 (7)
N1−0.11358 (18)−0.1259 (3)0.69313 (13)0.0622 (7)
N20.0109 (2)−0.1617 (3)0.58838 (14)0.0637 (8)
C120.2684 (2)−0.0139 (3)0.44062 (14)0.0549 (7)
H12A0.2111−0.07010.44420.066*
C1−0.1144 (2)0.1123 (4)0.77361 (15)0.0594 (8)
H1A−0.11420.19210.80080.071*
C110.4310 (3)0.1556 (4)0.4320 (2)0.0815 (11)
H11A0.48720.21410.42840.098*
C90.3363 (3)−0.0335 (4)0.38862 (17)0.0737 (10)
H9A0.3263−0.10460.35700.088*
C2−0.1828 (2)0.0077 (4)0.78440 (17)0.0668 (9)
H2A−0.23070.01540.81860.080*
C100.4181 (3)0.0526 (4)0.38424 (19)0.0836 (12)
H10A0.46470.04190.34940.100*
C3−0.1799 (2)−0.1083 (4)0.7442 (2)0.0771 (10)
H3A−0.2264−0.17970.75240.093*
H2B−0.035 (3)−0.213 (4)0.596 (2)0.094 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N40.0408 (11)0.0333 (10)0.0464 (11)−0.0003 (8)0.0028 (9)−0.0029 (9)
N30.0382 (10)0.0371 (11)0.0480 (12)−0.0019 (9)0.0041 (9)−0.0033 (9)
C60.0343 (11)0.0377 (12)0.0472 (13)0.0026 (10)−0.0009 (10)0.0029 (10)
C70.0352 (11)0.0328 (11)0.0404 (12)0.0027 (9)0.0015 (9)0.0039 (9)
C80.0428 (13)0.0333 (12)0.0464 (13)0.0046 (10)0.0036 (10)0.0045 (10)
C50.0354 (12)0.0433 (13)0.0474 (13)0.0030 (10)0.0020 (10)0.0079 (11)
C40.0458 (14)0.0514 (15)0.0532 (15)0.0018 (12)0.0002 (12)0.0005 (13)
N50.0655 (15)0.0419 (13)0.0594 (14)−0.0072 (11)0.0184 (12)−0.0095 (10)
N60.0511 (13)0.0472 (13)0.0727 (16)−0.0064 (11)0.0222 (11)−0.0075 (11)
N10.0541 (14)0.0555 (15)0.0771 (17)−0.0111 (11)0.0220 (12)0.0025 (12)
N20.0590 (15)0.0525 (15)0.0797 (18)−0.0209 (13)0.0172 (14)−0.0130 (13)
C120.0655 (18)0.0471 (15)0.0520 (15)−0.0007 (13)0.0043 (13)−0.0019 (13)
C10.0573 (17)0.0675 (19)0.0534 (16)0.0132 (15)0.0033 (13)−0.0029 (14)
C110.071 (2)0.071 (2)0.102 (3)−0.0065 (18)0.047 (2)−0.009 (2)
C90.102 (3)0.0601 (19)0.0585 (19)0.015 (2)0.0157 (18)−0.0142 (15)
C20.0563 (17)0.083 (2)0.0610 (19)0.0120 (16)0.0198 (14)0.0093 (17)
C100.091 (3)0.076 (2)0.085 (3)0.009 (2)0.049 (2)−0.005 (2)
C30.0621 (19)0.078 (2)0.091 (3)−0.0125 (17)0.0332 (19)0.006 (2)

Geometric parameters (Å, °)

N4—C71.295 (3)N6—C111.333 (4)
N4—N31.392 (3)N1—C31.349 (4)
N4—H4B0.8600N2—H2B0.79 (4)
N3—C61.287 (3)C12—C91.379 (4)
N3—H3B0.8600C12—H12A0.9300
C6—N21.350 (3)C1—C21.360 (4)
C6—C51.498 (3)C1—H1A0.9300
C7—N51.344 (3)C11—C101.371 (5)
C7—C81.490 (3)C11—H11A0.9300
C8—N61.335 (3)C9—C101.359 (5)
C8—C121.379 (4)C9—H9A0.9300
C5—N11.336 (3)C2—C31.360 (5)
C5—C41.378 (4)C2—H2A0.9300
C4—C11.374 (4)C10—H10A0.9300
C4—H4A0.9300C3—H3A0.9300
N5—H50.7500
C7—N4—N3113.29 (19)C5—N1—C3116.4 (3)
C7—N4—H4B123.4C6—N2—H2B121 (3)
N3—N4—H4B123.4C8—C12—C9118.6 (3)
C6—N3—N4112.7 (2)C8—C12—H12A120.7
C6—N3—H3B123.7C9—C12—H12A120.7
N4—N3—H3B123.7C2—C1—C4119.1 (3)
N3—C6—N2125.2 (2)C2—C1—H1A120.4
N3—C6—C5118.2 (2)C4—C1—H1A120.4
N2—C6—C5116.7 (2)N6—C11—C10123.5 (3)
N4—C7—N5124.9 (2)N6—C11—H11A118.3
N4—C7—C8117.3 (2)C10—C11—H11A118.3
N5—C7—C8117.8 (2)C10—C9—C12118.9 (3)
N6—C8—C12122.9 (2)C10—C9—H9A120.5
N6—C8—C7115.9 (2)C12—C9—H9A120.5
C12—C8—C7121.2 (2)C3—C2—C1118.7 (3)
N1—C5—C4122.8 (2)C3—C2—H2A120.6
N1—C5—C6115.0 (2)C1—C2—H2A120.6
C4—C5—C6122.2 (2)C9—C10—C11119.0 (3)
C1—C4—C5119.0 (3)C9—C10—H10A120.5
C1—C4—H4A120.5C11—C10—H10A120.5
C5—C4—H4A120.5N1—C3—C2123.9 (3)
C7—N5—H5109.5N1—C3—H3A118.0
C11—N6—C8117.1 (3)C2—C3—H3A118.0
C7—N4—N3—C6174.0 (2)C12—C8—N6—C11−0.9 (4)
N4—N3—C6—N2−0.9 (4)C7—C8—N6—C11−179.7 (3)
N4—N3—C6—C5179.12 (19)C4—C5—N1—C31.4 (4)
N3—N4—C7—N50.3 (3)C6—C5—N1—C3−179.3 (3)
N3—N4—C7—C8−179.77 (18)N6—C8—C12—C91.6 (4)
N4—C7—C8—N6−163.2 (2)C7—C8—C12—C9−179.6 (3)
N5—C7—C8—N616.7 (3)C5—C4—C1—C20.1 (4)
N4—C7—C8—C1217.9 (3)C8—N6—C11—C100.0 (6)
N5—C7—C8—C12−162.2 (2)C8—C12—C9—C10−1.4 (5)
N3—C6—C5—N1−176.7 (2)C4—C1—C2—C30.9 (5)
N2—C6—C5—N13.3 (3)C12—C9—C10—C110.5 (6)
N3—C6—C5—C42.7 (3)N6—C11—C10—C90.2 (6)
N2—C6—C5—C4−177.3 (2)C5—N1—C3—C2−0.3 (5)
N1—C5—C4—C1−1.4 (4)C1—C2—C3—N1−0.8 (6)
C6—C5—C4—C1179.4 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4B···N5i0.862.603.096 (3)117
N2—H2B···N10.79 (4)2.34 (4)2.670 (4)106 (3)
N3—H3B···N50.862.332.619 (3)100
N4—H4B···N20.862.312.608 (3)101

Symmetry codes: (i) −x+1/2, y−1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2254).

References

  • Asaji, T., Eda, K., Fujimori, H., Adachi, T., Shibusawa, T. & Oguni, M. (2007). J. Mol. Struct.826, 24–28.
  • Ferguson, G. (1999). PRPKAPPA University of Guelph, Canada.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shintou, T., Ikeuchi, F., Kuwabara, H., Umihara, K. & Itoh, I. J. (2005). Chemistry Lett.34, 836–838.
  • Wasicki, J., Czarnecki, P., Pajak, Z., Nawrocik, W. & Szepanski, W. (1997). J. Chem. Phys 107, 576–578.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography