PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1345.
Published online 2010 May 15. doi:  10.1107/S1600536810017307
PMCID: PMC2979659

Methyl 4-phenyl-1,2,3,3a,4,4a,5,12c-octa­hydronaphtho[1′,2′:3,2]furo[5,4-b]pyrrolizine-4a-carboxyl­ate

Abstract

In the title compound, C26H25NO3, both pyrrolidine rings adopt envelope conformations, whereas the dihydro­pyran ring adopts a half-chair conformation. The phenyl ring is oriented at an angle of 27.9 (1)° with respect to the naphthalene ring system. An intra­molecular C—H(...)O hydrogen bond is observed. The crystal packing is stabilized by weak inter­molecular C—H(...)π inter­actions.

Related literature

For general background to pyrrolizine derivatives, see: Barsoum & Nawar (2003 [triangle]); Abbas et al. (2010 [triangle]); Anderson & Corey (1977 [triangle]); Makoni & Sugden (1980 [triangle]); Laufer et al. (1997 [triangle]). For a related structure, see: Nirmala et al. (2009 [triangle]). For ring-puckering and asymmetry parameters, see: Cremer & Pople (1975 [triangle]); Nardelli (1983 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1345-scheme1.jpg

Experimental

Crystal data

  • C26H25NO3
  • M r = 399.47
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1345-efi1.jpg
  • a = 15.0117 (12) Å
  • b = 13.3421 (11) Å
  • c = 20.0242 (16) Å
  • V = 4010.6 (6) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.09 mm−1
  • T = 292 K
  • 0.24 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • 43738 measured reflections
  • 4779 independent reflections
  • 3892 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.047
  • wR(F 2) = 0.134
  • S = 1.04
  • 4779 reflections
  • 272 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97 and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017307/ci5092sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017307/ci5092Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

SS acknowledges the Department of Science and Technology (DST), India, for providing computing facilities under the DST-Fast Track Scheme. SS also thanks the Vice Chancellor and management of Kalasalingam University, Krishnankoil, for their support and encouragement.

supplementary crystallographic information

Comment

Pyrrolizine derivatives posses antimicrobial (Barsoum & Nawar, 2003), anti- inflammatory (Abbas et al., 2010) and antileukemic (Anderson & Corey, 1977) activities. These derivatives are used as inhibitors of blood platelet aggregation (Makoni & Sugden, 1980), dual cyclooxygenase-1 and 5-lipooxygenase (Laufer et al., 1997). In view of these importance, we have undertaken the crystal structure determination of the title compound, a pyrrolizine derivative, and the results are presented here.

The geometry of the pyrrolizine and naphthalene ring system is comparable with that observed in a related structure (Nirmala et al., 2009). The sum of the angles (337.1°) around atom N1 is in accordance with sp3 hybridization. There is a short contact (2.19 Å) between atoms H12A and H24, which results in the widening of the C24—C19—C14 angle [124.1 (1)°] from the ideal value of 120°.

The naphthalene ring system (C2–C11) and the phenyl ring (C19–C24) are oriented at an angle of 27.9 (1)°. In the pyrrolizine ring system, both the pyrrolidine rings N1/C1/C13–C15 and N1/C15–C18 adopt envelope conformations; the puckering parameters (Cremer & Pople, 1975) are : q2 = 0.396 (1) Å and [var phi] = -107.2 (2)° for N1/C1/C13–C15 ring, and q2 = 0.383 (2) Å and [var phi] = -79.1 (2)° for N1/C15–C18 ring. In the N1/C1/C13–C15 ring, atom C13 deviates by 0.620 (1) Å from the least-squares plane through the remaining four atoms, whereas in the ring N1/C15—C18, atom C17 deviates by -0.583 (2) Å from the plane through the remaining four atoms. The dihydropyran ring of the chromene unit adopts a half-chair conformation, with the lowest asymmetry parameter ΔC2(C2–C11) of 3.8 (2)° (Nardelli, 1983).

The molecular structure is influenced by an intramolecular C—H···O hydrogen bond. The crystal packing is stabilized by weak intermolecular C—H···π interactions ((Table 1).

Experimental

A mixture of (Z)-methyl-2[(1-formylnaphthalen-2-yloxy)methyl]-3-(4-phenyl) acrylate (20 mmol) and proline (30 mmol) was refluxed in benzene for 20 h and the solvent was removed under reduced pressure. The crude product was subjected to column chromatography to get the pure product. Single crystals were grown by slow evapoartion of a chloroform-methanol (1:1) soution.

Refinement

H atoms were placed in idealized positions and allowed to ride on their parent atoms, with C—H = 0.93, 0.98, 0.97 and 0.96 Å for aromatic, methine, methylene and methyl H respectively, and Uiso(H) = 1.5Ueq(C) for methyl H and Uiso(H) = 1.2Ueq(C) for all other H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level

Crystal data

C26H25NO3F(000) = 1696
Mr = 399.47Dx = 1.323 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 31182 reflections
a = 15.0117 (12) Åθ = 2.1–27.3°
b = 13.3421 (11) ŵ = 0.09 mm1
c = 20.0242 (16) ÅT = 292 K
V = 4010.6 (6) Å3Block, colourless
Z = 80.24 × 0.22 × 0.20 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer3892 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.030
graphiteθmax = 28.0°, θmin = 2.0°
ω scansh = −19→19
43738 measured reflectionsk = −17→17
4779 independent reflectionsl = −26→26

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.134H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0727P)2 + 0.9686P] where P = (Fo2 + 2Fc2)/3
4779 reflections(Δ/σ)max = 0.001
272 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.14 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.10550 (8)−0.01484 (8)0.07769 (6)0.0520 (3)
O20.00482 (7)0.17668 (10)0.09040 (6)0.0580 (3)
O30.10217 (7)0.27234 (10)0.14444 (6)0.0557 (3)
C10.23953 (8)0.13141 (9)0.11484 (6)0.0320 (3)
H10.24270.18490.14830.038*
C110.15871 (10)−0.02986 (10)0.13242 (7)0.0416 (3)
C100.13883 (12)−0.11691 (11)0.17021 (9)0.0519 (4)
H100.0920−0.15830.15740.062*
C90.18806 (12)−0.13999 (11)0.22501 (8)0.0498 (4)
H90.1741−0.19710.24950.060*
C80.26021 (10)−0.07888 (10)0.24562 (7)0.0403 (3)
C70.31301 (12)−0.10157 (12)0.30224 (7)0.0488 (4)
H70.3009−0.15920.32670.059*
C60.38112 (12)−0.04072 (13)0.32157 (8)0.0524 (4)
H60.4144−0.05620.35940.063*
C50.40078 (11)0.04538 (12)0.28425 (8)0.0477 (4)
H50.44790.08640.29710.057*
C40.35132 (10)0.06990 (10)0.22891 (7)0.0400 (3)
H40.36550.12720.20470.048*
C30.27917 (9)0.00946 (9)0.20814 (6)0.0346 (3)
C20.22530 (9)0.03416 (9)0.15139 (6)0.0348 (3)
C130.16187 (8)0.15725 (9)0.06619 (6)0.0330 (3)
C120.13359 (10)0.06083 (11)0.03088 (7)0.0415 (3)
H12A0.08500.07550.00040.050*
H12B0.18310.03540.00480.050*
N10.32208 (7)0.13550 (8)0.07478 (5)0.0347 (3)
C180.36312 (10)0.04152 (11)0.05115 (8)0.0438 (3)
H18A0.3189−0.01110.04710.053*
H18B0.40950.01950.08150.053*
C170.40179 (10)0.06837 (12)−0.01673 (8)0.0450 (3)
H17A0.40720.0095−0.04490.054*
H17B0.45980.0996−0.01220.054*
C160.33354 (10)0.14184 (12)−0.04488 (7)0.0431 (3)
H16A0.28270.1069−0.06370.052*
H16B0.35980.1844−0.07890.052*
C150.30691 (9)0.20250 (10)0.01671 (6)0.0349 (3)
H150.34680.26040.02050.042*
C140.20917 (8)0.23942 (10)0.02349 (6)0.0327 (3)
H140.21240.29830.05270.039*
C250.08026 (9)0.20086 (10)0.10127 (6)0.0362 (3)
C260.02975 (12)0.32140 (15)0.17845 (10)0.0615 (5)
H26A−0.01400.34230.14640.092*
H26B0.05190.37890.20200.092*
H26C0.00310.27570.20960.092*
C190.16797 (9)0.27750 (9)−0.04106 (6)0.0336 (3)
C240.07883 (9)0.26452 (10)−0.05833 (7)0.0398 (3)
H240.04240.2252−0.03140.048*
C230.04346 (11)0.30931 (11)−0.11511 (8)0.0469 (4)
H23−0.01650.3008−0.12530.056*
C220.09672 (12)0.36633 (12)−0.15645 (8)0.0505 (4)
H220.07330.3952−0.19490.061*
C210.18522 (11)0.38012 (12)−0.14008 (8)0.0493 (4)
H210.22150.4187−0.16760.059*
C200.22020 (10)0.33690 (11)−0.08297 (7)0.0415 (3)
H200.27970.3477−0.07230.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0578 (7)0.0420 (5)0.0561 (6)−0.0168 (5)−0.0144 (5)0.0024 (5)
O20.0359 (6)0.0730 (8)0.0650 (7)−0.0104 (5)0.0103 (5)−0.0186 (6)
O30.0384 (5)0.0666 (7)0.0622 (7)0.0043 (5)0.0008 (5)−0.0281 (6)
C10.0346 (6)0.0304 (6)0.0311 (6)−0.0025 (5)−0.0002 (5)0.0001 (5)
C110.0473 (8)0.0343 (7)0.0432 (8)−0.0044 (6)−0.0007 (6)−0.0009 (6)
C100.0575 (9)0.0356 (7)0.0628 (10)−0.0137 (7)0.0014 (8)0.0002 (7)
C90.0633 (10)0.0324 (7)0.0539 (9)−0.0039 (6)0.0109 (8)0.0079 (6)
C80.0518 (8)0.0320 (6)0.0369 (7)0.0056 (6)0.0111 (6)0.0022 (5)
C70.0648 (10)0.0430 (8)0.0387 (7)0.0134 (7)0.0112 (7)0.0103 (6)
C60.0618 (10)0.0594 (10)0.0359 (7)0.0139 (8)−0.0014 (7)0.0064 (7)
C50.0513 (9)0.0525 (8)0.0394 (7)0.0014 (7)−0.0040 (6)−0.0010 (6)
C40.0466 (7)0.0383 (7)0.0351 (7)−0.0005 (6)0.0011 (6)0.0016 (5)
C30.0422 (7)0.0312 (6)0.0304 (6)0.0028 (5)0.0058 (5)0.0002 (5)
C20.0402 (7)0.0302 (6)0.0339 (6)−0.0019 (5)0.0032 (5)−0.0004 (5)
C130.0328 (6)0.0348 (6)0.0315 (6)−0.0014 (5)0.0021 (5)0.0005 (5)
C120.0456 (8)0.0404 (7)0.0386 (7)−0.0044 (6)−0.0037 (6)−0.0041 (6)
N10.0342 (6)0.0349 (5)0.0349 (6)0.0015 (4)0.0014 (4)0.0029 (4)
C180.0453 (8)0.0398 (7)0.0463 (8)0.0088 (6)0.0031 (6)0.0005 (6)
C170.0402 (7)0.0503 (8)0.0444 (8)0.0085 (6)0.0025 (6)−0.0061 (6)
C160.0393 (7)0.0547 (8)0.0352 (7)0.0064 (6)0.0037 (6)−0.0012 (6)
C150.0321 (6)0.0379 (7)0.0347 (6)−0.0006 (5)0.0012 (5)0.0031 (5)
C140.0322 (6)0.0326 (6)0.0334 (6)−0.0015 (5)0.0018 (5)0.0005 (5)
C250.0346 (7)0.0416 (7)0.0322 (6)−0.0029 (5)0.0038 (5)0.0030 (5)
C260.0476 (9)0.0748 (12)0.0619 (10)0.0107 (8)0.0039 (8)−0.0265 (9)
C190.0362 (7)0.0320 (6)0.0326 (6)0.0033 (5)0.0018 (5)−0.0001 (5)
C240.0375 (7)0.0402 (7)0.0418 (7)−0.0004 (5)0.0008 (6)0.0021 (6)
C230.0458 (8)0.0465 (8)0.0483 (8)0.0014 (6)−0.0112 (6)−0.0031 (6)
C220.0647 (10)0.0488 (8)0.0379 (7)0.0054 (7)−0.0101 (7)0.0055 (6)
C210.0567 (9)0.0477 (8)0.0436 (8)0.0007 (7)0.0060 (7)0.0121 (6)
C200.0390 (7)0.0426 (7)0.0429 (7)−0.0002 (6)0.0021 (6)0.0055 (6)

Geometric parameters (Å, °)

O1—C111.3708 (18)C12—H12B0.97
O1—C121.4408 (18)N1—C181.4751 (18)
O2—C251.1974 (17)N1—C151.4842 (16)
O3—C251.3285 (17)C18—C171.521 (2)
O3—C261.4402 (18)C18—H18A0.97
C1—N11.4771 (16)C18—H18B0.97
C1—C21.5049 (17)C17—C161.526 (2)
C1—C131.5578 (18)C17—H17A0.97
C1—H10.98C17—H17B0.97
C11—C21.3686 (19)C16—C151.5283 (19)
C11—C101.418 (2)C16—H16A0.97
C10—C91.358 (2)C16—H16B0.97
C10—H100.93C15—C141.5538 (18)
C9—C81.417 (2)C15—H150.98
C9—H90.93C14—C191.5202 (17)
C8—C71.416 (2)C14—H140.98
C8—C31.4261 (18)C26—H26A0.96
C7—C61.362 (3)C26—H26B0.96
C7—H70.93C26—H26C0.96
C6—C51.402 (2)C19—C241.3931 (19)
C6—H60.93C19—C201.3953 (19)
C5—C41.373 (2)C24—C231.390 (2)
C5—H50.93C24—H240.93
C4—C31.413 (2)C23—C221.380 (2)
C4—H40.93C23—H230.93
C3—C21.4331 (19)C22—C211.381 (2)
C13—C251.5274 (18)C22—H220.93
C13—C121.5281 (18)C21—C201.384 (2)
C13—C141.5612 (17)C21—H210.93
C12—H12A0.97C20—H200.93
C11—O1—C12116.86 (11)C17—C18—H18A110.9
C25—O3—C26116.55 (12)N1—C18—H18B110.9
N1—C1—C2114.52 (10)C17—C18—H18B110.9
N1—C1—C13106.26 (10)H18A—C18—H18B108.9
C2—C1—C13112.87 (10)C18—C17—C16103.01 (11)
N1—C1—H1107.6C18—C17—H17A111.2
C2—C1—H1107.6C16—C17—H17A111.2
C13—C1—H1107.6C18—C17—H17B111.2
C2—C11—O1123.80 (13)C16—C17—H17B111.2
C2—C11—C10121.12 (14)H17A—C17—H17B109.1
O1—C11—C10115.07 (13)C17—C16—C15102.57 (11)
C9—C10—C11120.15 (15)C17—C16—H16A111.3
C9—C10—H10119.9C15—C16—H16A111.3
C11—C10—H10119.9C17—C16—H16B111.3
C10—C9—C8121.38 (13)C15—C16—H16B111.3
C10—C9—H9119.3H16A—C16—H16B109.2
C8—C9—H9119.3N1—C15—C16105.85 (11)
C7—C8—C9122.55 (13)N1—C15—C14105.50 (10)
C7—C8—C3119.10 (14)C16—C15—C14119.04 (11)
C9—C8—C3118.34 (13)N1—C15—H15108.7
C6—C7—C8121.36 (14)C16—C15—H15108.7
C6—C7—H7119.3C14—C15—H15108.7
C8—C7—H7119.3C19—C14—C15114.57 (10)
C7—C6—C5119.67 (15)C19—C14—C13121.02 (10)
C7—C6—H6120.2C15—C14—C13104.76 (10)
C5—C6—H6120.2C19—C14—H14105.0
C4—C5—C6120.76 (15)C15—C14—H14105.0
C4—C5—H5119.6C13—C14—H14105.0
C6—C5—H5119.6O2—C25—O3123.08 (13)
C5—C4—C3121.07 (13)O2—C25—C13124.91 (13)
C5—C4—H4119.5O3—C25—C13111.97 (11)
C3—C4—H4119.5O3—C26—H26A109.5
C4—C3—C8118.02 (12)O3—C26—H26B109.5
C4—C3—C2122.33 (12)H26A—C26—H26B109.5
C8—C3—C2119.66 (13)O3—C26—H26C109.5
C11—C2—C3119.25 (12)H26A—C26—H26C109.5
C11—C2—C1120.45 (12)H26B—C26—H26C109.5
C3—C2—C1120.25 (12)C24—C19—C20117.45 (12)
C25—C13—C12108.10 (11)C24—C19—C14124.08 (12)
C25—C13—C1113.39 (10)C20—C19—C14118.20 (12)
C12—C13—C1108.12 (10)C23—C24—C19121.11 (13)
C25—C13—C14110.43 (10)C23—C24—H24119.4
C12—C13—C14117.65 (11)C19—C24—H24119.4
C1—C13—C1499.06 (9)C22—C23—C24120.44 (14)
O1—C12—C13111.73 (11)C22—C23—H23119.8
O1—C12—H12A109.3C24—C23—H23119.8
C13—C12—H12A109.3C23—C22—C21119.25 (14)
O1—C12—H12B109.3C23—C22—H22120.4
C13—C12—H12B109.3C21—C22—H22120.4
H12A—C12—H12B107.9C22—C21—C20120.38 (14)
C18—N1—C1119.55 (11)C22—C21—H21119.8
C18—N1—C15108.94 (10)C20—C21—H21119.8
C1—N1—C15108.61 (10)C21—C20—C19121.36 (14)
N1—C18—C17104.24 (11)C21—C20—H20119.3
N1—C18—H18A110.9C19—C20—H20119.3
C12—O1—C11—C213.1 (2)C2—C1—N1—C15149.91 (11)
C12—O1—C11—C10−168.32 (13)C13—C1—N1—C1524.60 (13)
C2—C11—C10—C9−2.3 (3)C1—N1—C18—C17145.27 (12)
O1—C11—C10—C9179.13 (15)C15—N1—C18—C1719.65 (15)
C11—C10—C9—C8−0.4 (3)N1—C18—C17—C16−36.07 (15)
C10—C9—C8—C7−179.52 (15)C18—C17—C16—C1538.40 (15)
C10—C9—C8—C31.3 (2)C18—N1—C15—C164.57 (14)
C9—C8—C7—C6−178.96 (15)C1—N1—C15—C16−127.17 (11)
C3—C8—C7—C60.2 (2)C18—N1—C15—C14131.61 (11)
C8—C7—C6—C5−1.1 (2)C1—N1—C15—C14−0.13 (13)
C7—C6—C5—C40.9 (2)C17—C16—C15—N1−26.71 (14)
C6—C5—C4—C30.2 (2)C17—C16—C15—C14−145.10 (12)
C5—C4—C3—C8−1.2 (2)N1—C15—C14—C19−159.08 (10)
C5—C4—C3—C2178.77 (14)C16—C15—C14—C19−40.51 (16)
C7—C8—C3—C40.96 (19)N1—C15—C14—C13−24.14 (13)
C9—C8—C3—C4−179.87 (13)C16—C15—C14—C1394.43 (13)
C7—C8—C3—C2−178.97 (12)C25—C13—C14—C19−72.42 (14)
C9—C8—C3—C20.20 (19)C12—C13—C14—C1952.29 (16)
O1—C11—C2—C3−177.76 (13)C1—C13—C14—C19168.34 (11)
C10—C11—C2—C33.8 (2)C25—C13—C14—C15156.27 (11)
O1—C11—C2—C14.7 (2)C12—C13—C14—C15−79.02 (14)
C10—C11—C2—C1−173.79 (13)C1—C13—C14—C1537.03 (12)
C4—C3—C2—C11177.36 (13)C26—O3—C25—O2−0.3 (2)
C8—C3—C2—C11−2.7 (2)C26—O3—C25—C13177.64 (14)
C4—C3—C2—C1−5.09 (19)C12—C13—C25—O2−15.40 (19)
C8—C3—C2—C1174.83 (11)C1—C13—C25—O2−135.26 (15)
N1—C1—C2—C11−110.51 (14)C14—C13—C25—O2114.60 (16)
C13—C1—C2—C1111.26 (18)C12—C13—C25—O3166.74 (12)
N1—C1—C2—C371.97 (15)C1—C13—C25—O346.88 (15)
C13—C1—C2—C3−166.26 (11)C14—C13—C25—O3−63.26 (14)
N1—C1—C13—C25−154.82 (10)C15—C14—C19—C24144.48 (13)
C2—C1—C13—C2578.87 (13)C13—C14—C19—C2417.48 (19)
N1—C1—C13—C1285.34 (12)C15—C14—C19—C20−41.57 (16)
C2—C1—C13—C12−40.98 (14)C13—C14—C19—C20−168.57 (12)
N1—C1—C13—C14−37.80 (12)C20—C19—C24—C23−0.1 (2)
C2—C1—C13—C14−164.12 (10)C14—C19—C24—C23173.86 (13)
C11—O1—C12—C13−45.96 (17)C19—C24—C23—C221.2 (2)
C25—C13—C12—O1−64.37 (14)C24—C23—C22—C21−1.3 (2)
C1—C13—C12—O158.76 (15)C23—C22—C21—C200.2 (2)
C14—C13—C12—O1169.77 (11)C22—C21—C20—C190.9 (2)
C2—C1—N1—C1824.13 (16)C24—C19—C20—C21−0.9 (2)
C13—C1—N1—C18−101.18 (13)C14—C19—C20—C21−175.28 (13)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C3–C8 and C19–C24 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C24—H24···O20.932.593.388 (2)145
C7—H7···Cg2i0.932.823.6435 (17)148
C17—H17A···Cg2ii0.972.783.7065 (17)159
C21—H21···Cg1iii0.932.493.4174 (18)175
C26—H26B···Cg1iv0.962.583.477 (2)156

Symmetry codes: (i) −x+1/2, −y, z+1/2; (ii) −x+1/2, y−1/2, z; (iii) x, −y+1/2, z−1/2; (iv) −x+1/2, y+1/2, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5092).

References

  • Abbas, S. E., Awadallah, F. M., Ibrahim, N. A. & Gouda, A. M. (2010). Eur. J. Med. Chem.45, 482–491. [PubMed]
  • Anderson, W. K. & Corey, P. F. (1977). J. Med. Chem.20, 812–818. [PubMed]
  • Barsoum, F. F. & Nawar, N. N. (2003). Boll. Chim. Farm.142, 160–166. [PubMed]
  • Bruker (2001). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc.97, 1354–1358.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Laufer, S., Striegel, H. G., Neher, K., Zechmeister, P., Donat, C., Stolingwa, K., Baur, S., Tries, S., Kammermeier, T., Dannhardt, G. & Kiefer, W. (1997). Arch. Pharm. (Weinheim), 330, 307–312. [PubMed]
  • Makoni, S. H. & Sugden, J. K. (1980). Arzneimittelforschung, 30, 1135–1137. [PubMed]
  • Nardelli, M. (1983). Acta Cryst. C39, 1141–1142.
  • Nirmala, S., Kamala, E. T. S., Sudha, L., Kathiravan, S. & Raghunathan, R. (2009). Acta Cryst. E65, o1938. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography