PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1420–o1421.
Published online 2010 May 22. doi:  10.1107/S1600536810018180
PMCID: PMC2979649

2-Amino-5-methyl­pyridinium picolinate 0.63-hydrate

Abstract

The asymmetric unit of the title compound, C6H9N2 +·C6H4NO2 ·0.63H2O, contains two crystallographically independent 2-amino-5-methyl­pyridinium cations, a pair of picolinate anions and two water mol­ecules, one with an occupancy of 0.25. Both the 2-amino-5-methyl­pyridine mol­ecules are protonated at the pyridine N atoms. In the crystal structure, the cations, anions and water mol­ecules are linked via N—H(...)O, N—H(...)N and O—H(...)O hydrogen bonds, as well as by C—H(...)O contacts, forming a chain along the b axis. In addition, weak π–π inter­actions are observed between pyridinium rings, with centroid–centroid distances of 3.5306 (13) Å.

Related literature

For background to the chemistry of substituted pyridines, see: Pozharski et al. (1997 [triangle]); Katritzky et al. (1996 [triangle]); Navarro Ranninger et al. (1985 [triangle]); Luque et al. (1997 [triangle]); Qin et al. (1999 [triangle]); Yip et al. (1999 [triangle]); Ren et al. (2002 [triangle]); Rivas et al. (2003 [triangle]); Jin et al. (2001 [triangle]); Albrecht et al. (2003 [triangle]); Nahringbauer & Kvick (1977 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For details of picolinic acid, see: Mahler & Cordes (1971 [triangle]); Ogata et al. (2000 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1420-scheme1.jpg

Experimental

Crystal data

  • C6H9N2 +·C6H4NO2 ·0.63H2O
  • M r = 242.51
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1420-efi1.jpg
  • a = 12.126 (3) Å
  • b = 13.842 (3) Å
  • c = 14.318 (3) Å
  • V = 2403.4 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 100 K
  • 0.28 × 0.20 × 0.09 mm

Data collection

  • Bruker APEXII DUO CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.973, T max = 0.991
  • 50363 measured reflections
  • 3955 independent reflections
  • 3119 reflections with I > 2σ(I)
  • R int = 0.068

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.141
  • S = 1.09
  • 3955 reflections
  • 353 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018180/sj5005sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018180/sj5005Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives play an important role in heterocyclic chemistry (Pozharski et al., 1997; Katritzky et al., 1996). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). There are numerous examples of 2-amino-substituted pyridine compounds in which the 2-aminopyridines act as neutral ligands (Navarro Ranninger et al., 1985; Luque et al., 1997; Qin et al., 1999; Yip et al., 1999; Ren et al., 2002; Rivas et al., 2003) or as protonated cations (Luque et al., 1997; Jin et al., 2001; Albrecht et al., 2003). Picolinic acid (pyridine-2-carboxylic acid) is a well known terminal tryptophan metabolite (Mahler & Cordes, 1971). It induces apoptosis in leukaemia HL-60 cells (Ogata et al., 2000). Since our aim is to study some interesting hydrogen bonding interactions, the crystal structure of the title compound is presented here.

The asymmetric unit of the title compound consists of two crystallographically independent 2-amino-5-methylpyridinium cations (A and B), two picolinate anions (A and B) and two water molecules, O1W and O2W (with occupancies 0.25 and 1.0, respectively), (Fig. 1). Each 2-amino-5-methylpyridinium cation is planar, with a maximum deviation of 0.024 (2) Å for atom C6A in cation A and 0.005 (2) Å for atom C1B in cation B. In the cations, protonation at atoms N1A and N1B lead to a slight increase in the C1A—N1A—C5A [123.2 (2)°] and C1B—N1B—C5B [123.0 (2)°] angles compared to those observed in an unprotonated structure (Nahringbauer & Kvick, 1977). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure (Fig. 2), the carboxylate groups of each picolinate anion interact with the corresponding 2-amino-5-methylpyridinium cations via a pair of N—H···O hydrogen bonds forming an R22(8) ring motif (Bernstein et al., 1995). The ionic units are linked by N—H···N, N—H···O, O—H···O and C—H···O (Table 1) hydrogen bonds, forming a one-dimensional chain along the b-axis. The crystal structure is further stabilized by π–π interactions involving the pyridinium (N1A/C1A–C5A) and pyridinium (N1B/C1B–C5B) rings, with centroid-to-centroid distance of 3.5306 (13) Å [symmetry code: 1-x, 1/2+y, 1/2-z].

Experimental

Hot methanol solutions (20 ml) of 2-amino-5-methylpyridine (54 mg, Aldrich) and picolinic acid (62 mg, Merck) were mixed and warmed over a a magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and crystals of the title compound appeared after a few days.

Refinement

Atoms H1NA, H2NA, H3NA, H1NB, H2NB and H3NB were located from a difference Fourier map and freely refined. The remaining hydrogen atoms were positioned geometrically [C–H = 0.93 Å, N–H = 0.82 (3)–0.97 (4) Å and O–H = 0.8098–0.8226 Å] and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C, N) or 1.5 Ueq(O). The methyl H atoms were positioned geometrically and were refined using a riding model, with Uiso(H) = 1.5Ueq(C). A rotating group model was used for the methyl group. The occupancy of the (O1W) water molecule was initially refined and then fixed at 25% occupancy in the final refinement. In the absence of significant anomalous scattering effects, 3139 Friedel pairs were merged.

Figures

Fig. 1.
The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of the title compound, showing hydrogen-bonded (dashed lines) networks. H atoms not involved in hydrogen bond interactions are omitted for clarity.

Crystal data

C6H9N2+·C6H4NO2·0.63H2OF(000) = 1026
Mr = 242.51Dx = 1.340 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 7433 reflections
a = 12.126 (3) Åθ = 2.2–29.8°
b = 13.842 (3) ŵ = 0.10 mm1
c = 14.318 (3) ÅT = 100 K
V = 2403.4 (10) Å3Block, colourless
Z = 80.28 × 0.20 × 0.09 mm

Data collection

Bruker APEXII DUO CCD area-detector diffractometer3955 independent reflections
Radiation source: fine-focus sealed tube3119 reflections with I > 2σ(I)
graphiteRint = 0.068
[var phi] and ω scansθmax = 30.2°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −17→17
Tmin = 0.973, Tmax = 0.991k = −19→19
50363 measured reflectionsl = −20→20

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0779P)2 + 0.4137P] where P = (Fo2 + 2Fc2)/3
3955 reflections(Δ/σ)max = 0.001
353 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
N1A0.97657 (16)0.86544 (15)0.09594 (13)0.0235 (4)
N2A0.98590 (18)0.69933 (17)0.08274 (15)0.0291 (5)
C1A0.93479 (19)0.78196 (18)0.06311 (15)0.0231 (4)
C2A0.83756 (19)0.78782 (18)0.00781 (17)0.0253 (5)
H2AA0.80600.7319−0.01620.030*
C3A0.79046 (19)0.87571 (18)−0.01001 (17)0.0257 (5)
H3AA0.72730.8789−0.04670.031*
C4A0.83615 (19)0.96169 (17)0.02636 (17)0.0247 (5)
C5A0.92944 (19)0.95332 (17)0.07947 (16)0.0238 (5)
H5AA0.96131.00850.10480.029*
C6A0.7824 (2)1.05808 (19)0.01044 (19)0.0306 (5)
H6AA0.81701.10580.04930.046*
H6AB0.70551.05390.02580.046*
H6AC0.79041.0761−0.05390.046*
O1A1.0576 (2)0.51193 (14)0.1466 (2)0.0585 (8)
O2A1.06051 (16)0.35162 (13)0.15326 (14)0.0349 (4)
N3A0.8965 (2)0.50822 (17)0.01507 (19)0.0407 (6)
C7A0.8132 (2)0.5040 (2)−0.0465 (2)0.0425 (7)
H7AA0.79460.5602−0.07850.051*
C8A0.7533 (2)0.4213 (2)−0.0653 (2)0.0373 (6)
H8AA0.69590.4219−0.10840.045*
C9A0.7809 (2)0.3379 (2)−0.0184 (2)0.0332 (6)
H9AA0.74200.2811−0.02880.040*
C10A0.8683 (2)0.34009 (19)0.04496 (18)0.0280 (5)
H10A0.88900.28460.07710.034*
C11A0.9239 (2)0.42690 (18)0.05917 (18)0.0282 (5)
C12A1.0218 (2)0.43223 (19)0.1257 (2)0.0319 (5)
N1B0.24603 (16)0.35896 (15)0.24965 (14)0.0233 (4)
N2B0.25938 (19)0.52545 (16)0.24544 (15)0.0271 (4)
C1B0.29982 (19)0.44099 (17)0.27328 (16)0.0230 (4)
C2B0.39853 (18)0.43069 (17)0.32614 (17)0.0251 (5)
H2BA0.43840.48510.34380.030*
C3B0.4344 (2)0.34168 (19)0.35063 (18)0.0280 (5)
H3BA0.49890.33620.38530.034*
C4B0.3767 (2)0.25626 (18)0.32509 (17)0.0276 (5)
C5B0.2821 (2)0.26944 (17)0.27415 (17)0.0251 (5)
H5BA0.24150.21570.25590.030*
C6B0.4152 (3)0.15790 (19)0.3523 (2)0.0392 (7)
H6BA0.37320.11020.31910.059*
H6BB0.40520.14910.41820.059*
H6BC0.49190.15110.33710.059*
O1B0.16897 (15)0.71003 (12)0.20473 (13)0.0300 (4)
O2B0.16686 (15)0.87068 (13)0.18961 (13)0.0310 (4)
N3B0.35568 (17)0.71727 (15)0.30874 (15)0.0279 (4)
C7B0.4429 (2)0.72461 (19)0.3658 (2)0.0358 (6)
H7BA0.47670.66790.38570.043*
C8B0.4858 (2)0.8121 (2)0.3969 (2)0.0373 (6)
H8BA0.54580.81340.43730.045*
C9B0.4378 (2)0.89624 (19)0.36688 (19)0.0332 (6)
H9BA0.46500.95580.38600.040*
C10B0.3477 (2)0.89054 (18)0.30724 (17)0.0271 (5)
H10B0.31420.94650.28510.033*
C11B0.30822 (18)0.80070 (17)0.28102 (16)0.0227 (4)
C12B0.20592 (18)0.79216 (17)0.21971 (16)0.0222 (4)
O1W0.1654 (5)0.0578 (4)0.2767 (5)0.0227 (12)0.25
H1W10.11960.09660.29370.034*0.25
H2W10.13980.00690.25820.034*0.25
O2W0.0279 (3)0.15220 (18)0.17835 (19)0.0758 (10)
H1W2−0.02190.14020.21500.114*
H2W20.03120.21030.16670.114*
H1NA1.044 (3)0.858 (3)0.131 (3)0.050 (10)*
H2NA1.049 (3)0.702 (3)0.124 (3)0.060 (11)*
H3NA0.959 (3)0.638 (2)0.064 (2)0.034 (8)*
H1NB0.177 (3)0.359 (3)0.219 (3)0.061 (11)*
H2NB0.292 (3)0.574 (2)0.263 (2)0.037 (9)*
H3NB0.193 (3)0.525 (3)0.212 (2)0.045 (9)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N1A0.0208 (9)0.0264 (10)0.0232 (9)0.0005 (8)−0.0022 (8)0.0015 (8)
N2A0.0295 (10)0.0258 (11)0.0318 (11)0.0013 (9)−0.0059 (9)0.0014 (9)
C1A0.0233 (10)0.0254 (11)0.0206 (10)0.0000 (9)0.0007 (9)0.0010 (9)
C2A0.0242 (10)0.0245 (11)0.0274 (11)−0.0028 (9)−0.0029 (9)−0.0013 (9)
C3A0.0205 (10)0.0314 (12)0.0253 (11)−0.0022 (9)−0.0019 (9)0.0026 (9)
C4A0.0231 (10)0.0248 (11)0.0263 (11)0.0013 (9)0.0032 (9)0.0031 (9)
C5A0.0240 (10)0.0217 (11)0.0257 (11)−0.0007 (9)0.0002 (9)−0.0008 (9)
C6A0.0275 (11)0.0281 (12)0.0361 (13)0.0001 (10)−0.0007 (10)0.0047 (11)
O1A0.0586 (14)0.0248 (10)0.0922 (19)−0.0069 (10)−0.0532 (14)0.0083 (11)
O2A0.0308 (9)0.0263 (9)0.0475 (11)−0.0005 (7)−0.0147 (8)0.0024 (8)
N3A0.0420 (13)0.0305 (12)0.0495 (14)−0.0023 (10)−0.0252 (12)0.0033 (11)
C7A0.0435 (16)0.0355 (15)0.0483 (16)0.0052 (13)−0.0225 (14)0.0034 (13)
C8A0.0311 (13)0.0435 (16)0.0373 (14)0.0067 (12)−0.0122 (11)−0.0120 (12)
C9A0.0267 (12)0.0338 (14)0.0392 (14)−0.0009 (10)−0.0045 (11)−0.0136 (11)
C10A0.0242 (11)0.0293 (12)0.0305 (12)0.0010 (10)0.0006 (9)−0.0032 (10)
C11A0.0265 (11)0.0263 (12)0.0318 (12)−0.0001 (10)−0.0057 (10)−0.0009 (10)
C12A0.0298 (12)0.0253 (12)0.0407 (14)−0.0018 (10)−0.0125 (11)0.0017 (11)
N1B0.0228 (9)0.0216 (10)0.0255 (9)0.0017 (8)−0.0028 (8)−0.0009 (8)
N2B0.0292 (10)0.0215 (10)0.0305 (11)0.0005 (9)−0.0057 (9)0.0004 (8)
C1B0.0225 (10)0.0235 (11)0.0230 (10)0.0006 (9)0.0019 (8)0.0003 (9)
C2B0.0209 (10)0.0249 (11)0.0294 (12)−0.0010 (9)−0.0036 (9)−0.0018 (9)
C3B0.0246 (11)0.0298 (13)0.0295 (12)0.0024 (9)−0.0051 (9)0.0019 (10)
C4B0.0300 (12)0.0246 (11)0.0281 (11)0.0028 (10)−0.0030 (10)0.0016 (9)
C5B0.0277 (11)0.0208 (11)0.0268 (11)−0.0004 (9)−0.0017 (9)−0.0001 (9)
C6B0.0436 (15)0.0250 (12)0.0490 (16)0.0054 (12)−0.0147 (13)0.0054 (12)
O1B0.0288 (8)0.0233 (8)0.0378 (10)0.0010 (7)−0.0088 (8)−0.0037 (7)
O2B0.0280 (8)0.0267 (9)0.0382 (10)−0.0038 (7)−0.0098 (8)0.0084 (8)
N3B0.0256 (10)0.0254 (10)0.0327 (10)−0.0018 (8)−0.0074 (8)0.0038 (8)
C7B0.0348 (13)0.0256 (13)0.0470 (15)−0.0031 (11)−0.0183 (12)0.0069 (11)
C8B0.0367 (13)0.0322 (14)0.0432 (15)−0.0102 (12)−0.0176 (12)0.0065 (12)
C9B0.0376 (14)0.0236 (12)0.0385 (14)−0.0115 (10)−0.0126 (12)0.0055 (11)
C10B0.0294 (12)0.0200 (11)0.0320 (12)−0.0043 (9)−0.0048 (10)0.0048 (9)
C11B0.0207 (10)0.0246 (11)0.0227 (10)−0.0032 (9)0.0004 (8)0.0026 (9)
C12B0.0206 (9)0.0237 (11)0.0222 (10)−0.0007 (9)0.0007 (8)0.0016 (9)
O1W0.018 (3)0.017 (3)0.032 (3)0.000 (2)0.005 (3)−0.001 (3)
O2W0.122 (3)0.0424 (13)0.0626 (15)−0.0350 (16)0.0451 (17)−0.0191 (12)

Geometric parameters (Å, °)

N1A—C1A1.347 (3)N1B—H1NB0.95 (4)
N1A—C5A1.365 (3)N2B—C1B1.329 (3)
N1A—H1NA0.97 (4)N2B—H2NB0.82 (3)
N2A—C1A1.331 (3)N2B—H3NB0.93 (3)
N2A—H2NA0.96 (4)C1B—C2B1.423 (3)
N2A—H3NA0.94 (3)C2B—C3B1.353 (3)
C1A—C2A1.423 (3)C2B—H2BA0.9300
C2A—C3A1.368 (3)C3B—C4B1.421 (4)
C2A—H2AA0.9300C3B—H3BA0.9300
C3A—C4A1.412 (3)C4B—C5B1.371 (3)
C3A—H3AA0.9300C4B—C6B1.491 (3)
C4A—C5A1.368 (3)C5B—H5BA0.9300
C4A—C6A1.502 (3)C6B—H6BA0.9600
C5A—H5AA0.9300C6B—H6BB0.9600
C6A—H6AA0.9600C6B—H6BC0.9600
C6A—H6AB0.9600O1B—C12B1.241 (3)
C6A—H6AC0.9600O2B—C12B1.262 (3)
O1A—C12A1.223 (3)N3B—C7B1.340 (3)
O2A—C12A1.273 (3)N3B—C11B1.350 (3)
N3A—C11A1.333 (3)C7B—C8B1.391 (4)
N3A—C7A1.343 (3)C7B—H7BA0.9300
C7A—C8A1.382 (4)C8B—C9B1.372 (4)
C7A—H7AA0.9300C8B—H8BA0.9300
C8A—C9A1.376 (4)C9B—C10B1.389 (3)
C8A—H8AA0.9300C9B—H9BA0.9300
C9A—C10A1.395 (3)C10B—C11B1.384 (3)
C9A—H9AA0.9300C10B—H10B0.9300
C10A—C11A1.393 (3)C11B—C12B1.524 (3)
C10A—H10A0.9300O1W—H1W10.8098
C11A—C12A1.523 (3)O1W—H2W10.8148
N1B—C1B1.353 (3)O2W—H1W20.8172
N1B—C5B1.360 (3)O2W—H2W20.8226
C1A—N1A—C5A123.2 (2)C1B—N1B—H1NB123 (2)
C1A—N1A—H1NA114 (2)C5B—N1B—H1NB114 (2)
C5A—N1A—H1NA122 (2)C1B—N2B—H2NB117 (2)
C1A—N2A—H2NA118 (2)C1B—N2B—H3NB117 (2)
C1A—N2A—H3NA123.3 (19)H2NB—N2B—H3NB126 (3)
H2NA—N2A—H3NA119 (3)N2B—C1B—N1B119.1 (2)
N2A—C1A—N1A119.2 (2)N2B—C1B—C2B123.9 (2)
N2A—C1A—C2A123.5 (2)N1B—C1B—C2B117.0 (2)
N1A—C1A—C2A117.2 (2)C3B—C2B—C1B119.9 (2)
C3A—C2A—C1A120.0 (2)C3B—C2B—H2BA120.0
C3A—C2A—H2AA120.0C1B—C2B—H2BA120.0
C1A—C2A—H2AA120.0C2B—C3B—C4B122.2 (2)
C2A—C3A—C4A121.1 (2)C2B—C3B—H3BA118.9
C2A—C3A—H3AA119.4C4B—C3B—H3BA118.9
C4A—C3A—H3AA119.4C5B—C4B—C3B116.0 (2)
C5A—C4A—C3A117.3 (2)C5B—C4B—C6B121.5 (2)
C5A—C4A—C6A121.2 (2)C3B—C4B—C6B122.6 (2)
C3A—C4A—C6A121.5 (2)N1B—C5B—C4B121.8 (2)
N1A—C5A—C4A121.2 (2)N1B—C5B—H5BA119.1
N1A—C5A—H5AA119.4C4B—C5B—H5BA119.1
C4A—C5A—H5AA119.4C4B—C6B—H6BA109.5
C4A—C6A—H6AA109.5C4B—C6B—H6BB109.5
C4A—C6A—H6AB109.5H6BA—C6B—H6BB109.5
H6AA—C6A—H6AB109.5C4B—C6B—H6BC109.5
C4A—C6A—H6AC109.5H6BA—C6B—H6BC109.5
H6AA—C6A—H6AC109.5H6BB—C6B—H6BC109.5
H6AB—C6A—H6AC109.5C7B—N3B—C11B116.8 (2)
C11A—N3A—C7A117.5 (2)N3B—C7B—C8B123.8 (2)
N3A—C7A—C8A124.0 (3)N3B—C7B—H7BA118.1
N3A—C7A—H7AA118.0C8B—C7B—H7BA118.1
C8A—C7A—H7AA118.0C9B—C8B—C7B118.7 (2)
C9A—C8A—C7A118.1 (2)C9B—C8B—H8BA120.7
C9A—C8A—H8AA120.9C7B—C8B—H8BA120.7
C7A—C8A—H8AA120.9C8B—C9B—C10B118.6 (2)
C8A—C9A—C10A119.0 (2)C8B—C9B—H9BA120.7
C8A—C9A—H9AA120.5C10B—C9B—H9BA120.7
C10A—C9A—H9AA120.5C11B—C10B—C9B119.3 (2)
C11A—C10A—C9A118.8 (2)C11B—C10B—H10B120.3
C11A—C10A—H10A120.6C9B—C10B—H10B120.3
C9A—C10A—H10A120.6N3B—C11B—C10B122.8 (2)
N3A—C11A—C10A122.6 (2)N3B—C11B—C12B116.7 (2)
N3A—C11A—C12A116.7 (2)C10B—C11B—C12B120.5 (2)
C10A—C11A—C12A120.7 (2)O1B—C12B—O2B126.5 (2)
O1A—C12A—O2A125.7 (2)O1B—C12B—C11B117.7 (2)
O1A—C12A—C11A118.3 (2)O2B—C12B—C11B115.8 (2)
O2A—C12A—C11A116.0 (2)H1W1—O1W—H2W1114.2
C1B—N1B—C5B123.0 (2)H1W2—O2W—H2W2111.4
C5A—N1A—C1A—N2A−179.8 (2)C5B—N1B—C1B—N2B179.2 (2)
C5A—N1A—C1A—C2A0.8 (3)C5B—N1B—C1B—C2B0.1 (3)
N2A—C1A—C2A—C3A−179.4 (2)N2B—C1B—C2B—C3B−179.2 (2)
N1A—C1A—C2A—C3A0.0 (3)N1B—C1B—C2B—C3B−0.2 (3)
C1A—C2A—C3A—C4A−0.6 (4)C1B—C2B—C3B—C4B0.2 (4)
C2A—C3A—C4A—C5A0.4 (3)C2B—C3B—C4B—C5B−0.1 (4)
C2A—C3A—C4A—C6A−177.5 (2)C2B—C3B—C4B—C6B−179.6 (3)
C1A—N1A—C5A—C4A−1.0 (3)C1B—N1B—C5B—C4B0.0 (4)
C3A—C4A—C5A—N1A0.4 (3)C3B—C4B—C5B—N1B0.0 (4)
C6A—C4A—C5A—N1A178.3 (2)C6B—C4B—C5B—N1B179.5 (2)
C11A—N3A—C7A—C8A1.3 (5)C11B—N3B—C7B—C8B0.0 (4)
N3A—C7A—C8A—C9A−0.3 (5)N3B—C7B—C8B—C9B−1.1 (5)
C7A—C8A—C9A—C10A−0.6 (4)C7B—C8B—C9B—C10B0.6 (4)
C8A—C9A—C10A—C11A0.6 (4)C8B—C9B—C10B—C11B0.9 (4)
C7A—N3A—C11A—C10A−1.4 (4)C7B—N3B—C11B—C10B1.6 (4)
C7A—N3A—C11A—C12A177.5 (3)C7B—N3B—C11B—C12B−177.3 (2)
C9A—C10A—C11A—N3A0.5 (4)C9B—C10B—C11B—N3B−2.1 (4)
C9A—C10A—C11A—C12A−178.3 (2)C9B—C10B—C11B—C12B176.8 (2)
N3A—C11A—C12A—O1A11.8 (4)N3B—C11B—C12B—O1B4.8 (3)
C10A—C11A—C12A—O1A−169.3 (3)C10B—C11B—C12B—O1B−174.2 (2)
N3A—C11A—C12A—O2A−166.9 (3)N3B—C11B—C12B—O2B−175.6 (2)
C10A—C11A—C12A—O2A12.0 (4)C10B—C11B—C12B—O2B5.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2W—H2W2···O2Ai0.822.002.812 (2)170
N1A—H1NA···O2Bii0.99 (2)1.69 (2)2.669 (2)170 (2)
N2A—H2NA···O1Bii0.94 (3)1.89 (3)2.829 (2)178 (3)
N2A—H3NA···N3A0.94 (3)2.08 (3)3.019 (3)177 (2)
N1B—H1NB···O2Ai0.96 (3)1.68 (3)2.642 (2)173 (3)
N2B—H2NB···N3B0.83 (3)2.22 (3)3.040 (2)173 (2)
N2B—H3NB···O1Ai0.93 (2)1.90 (2)2.831 (3)175 (2)
C5A—H5AA···O2Wiii0.932.393.319 (3)175
C7A—H7AA···O2Biv0.932.423.217 (3)144
C8A—H8AA···O2Wv0.932.503.339 (3)151

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) x+1, y+1, z; (iv) x+1/2, −y+3/2, −z; (v) x+1/2, −y+1/2, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5005).

References

  • Albrecht, A. S., Landee, C. P. & Turnbull, M. M. (2003). J. Chem. Crystallogr.33, 269–276.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  • Jin, Z. M., Pan, Y. J., Hu, M. L. & Shen, L. (2001). J. Chem. Crystallogr.31, 191–195.
  • Katritzky, A. R., Rees, C. W. & Scriven, E. F. V. (1996). Comprehensive Heterocyclic Chemistry II. Oxford: Pergamon Press.
  • Luque, A., Sertucha, J., Lezama, L., Rojo, T. & Roman, P. (1997). J. Chem. Soc. Dalton Trans. pp. 847–854.
  • Mahler, H. R. & Cordes, E. H. (1971). Biological Chemistry, 2nd ed., pp. 801–803. New York: Harper and Row Publishers.
  • Nahringbauer, I. & Kvick, Å. (1977). Acta Cryst. B33, 2902–2905.
  • Navarro Ranninger, M.-C., Martínez-Carrera, S. & García-Blanco, S. (1985). Acta Cryst. C41, 21–22.
  • Ogata, S., Takeuchi, M., Fujita, H., Shibata, K., Okumura, K. & Taguchi, H. (2000). Biosci. Biotechnol. Biochem.64, 327–332. [PubMed]
  • Pozharski, A. F., Soldatenkov, A. T. & Katritzky, A. R. (1997). Heterocycles in Life and Society. New York: Wiley.
  • Qin, J. G., Su, N. B., Dai, C. Y., Yang, C. L., Liu, D. Y., Day, M. W., Wu, B. C. & Chen, C. T. (1999). Polyhedron, 18, 3461–3464.
  • Ren, P., Su, N. B., Qin, J. G., Day, M. W. & Chen, C. T. (2002). Chin. J. Struct. Chem.21, 38–41.
  • Rivas, J. C. M., Salvagni, E., Rosales, R. T. M. & Parsons, S. (2003). Dalton Trans. pp. 3339–3349.
  • Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yip, J. H. K., Feng, R. & Vittal, J. J. (1999). Inorg. Chem.38, 3586–3589. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography