PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m608–m609.
Published online 2010 May 8. doi:  10.1107/S160053681001562X
PMCID: PMC2979648

[μ-1,1′-Bis(diphenyl­phosphino)ferrocene]bis­{[(Z)-O-ethyl N-phenyl­thio­carbamato-κS]gold(I)} dichloro­methane solvate

Abstract

The binuclear title compound, [Au2Fe(C9H10NOS)2(C17H14P)2]·CH2Cl2, which has the Fe atom located on a crystallographic centre of inversion, crystallizes as a 1:1 dichloro­methane solvate, which is disordered about a centre of inversion. There is a small deviation from linearity defined by the SP donor set [S1—Au—P1 angle is 175.35 (5) °] which is due to an intra­molecular Au(...)O contact [3.080 (5) Å]. The primary inter­molecular contacts between binuclear mol­ecules are of the type C—H(...)π, and are arranged so as to form columns in the a-axis direction in which the disordered solvent mol­ecules reside.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006 [triangle]); Ho & Tiekink (2007 [triangle]); Kuan et al. (2008 [triangle]). For the synthesis, see: Hall et al. (1993 [triangle]). For related structures, see: Ho & Tiekink (2009 [triangle]); Tadbuppa & Tiekink (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m608-scheme1.jpg

Experimental

Crystal data

  • [Au2Fe(C9H10NOS)2(C17H14P)2]·CH2Cl2
  • M r = 1393.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m608-efi1.jpg
  • a = 8.442 (3) Å
  • b = 12.957 (5) Å
  • c = 13.440 (5) Å
  • α = 108.045 (8)°
  • β = 103.177 (8)°
  • γ = 106.853 (8)°
  • V = 1253.5 (9) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 6.42 mm−1
  • T = 223 K
  • 0.49 × 0.04 × 0.04 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.577, T max = 1
  • 8618 measured reflections
  • 5688 independent reflections
  • 5025 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.106
  • S = 1.02
  • 5688 reflections
  • 307 parameters
  • 13 restraints
  • H-atom parameters constrained
  • Δρmax = 2.84 e Å−3
  • Δρmin = −1.47 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S160053681001562X/pk2245sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001562X/pk2245Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

supplementary crystallographic information

Comment

The dppf (where dppf is the bidentate phosphine, [Ph2P(C5H4)]2Fe) derivatives of phosphinegold(I) thiocarbamides, of interest owing to crystal engineering and luminescence studies (Ho et al. 2006; Ho & Tiekink, 2007; Kuan et al., 2008), are comparatively rare. Thus, only three examples of dppf{Au[SC(OR)═NR']}2 have been described, i.e. R = Me & R' = PhNO2-4 (Ho et al., 2006), R = iPr & R' = PhNO2-4 (Ho & Tiekink, 2009), and R = iPr & R' = PhMe-4 (Tadbuppa & Tiekink, 2009). In the present report, the crystal structure of the R = Et & R' = H derivative, (I), is described.

The dinuclear molecule has crystallographic symmetry with the Fe atom lying on an inversion centre, Fig. 1. The dinuclear molecule crystallises with a solvent dichloromethane molecule which is disordered about a centre of inversion, Fig. 1. The gold atom exists in the expected linear geometry defined by a SP donor set, Table 1, and the deviation from linearity [S1–Au–P1 is 175.35 (5) °] is ascribed to the close approach of the O1 atom, Au···O = 3.080 (5) Å. The anion, with a Z configuration about the C1═N1 bond, shows the expected characteristics. The magnitudes of the C1—S1 and C1═N1 bond distances of 1.755 (6) and 1.277 (8) Å, respectively, confirm that the anion is coordinating as a thiolate ligand. The overall conformation of the molecule is "open" in that the thiocarbamate ligands are lying on either side of the molecule, as found in the structure of the R = iPr & R' = PhMe-4 derivative (Tadbuppa & Tiekink, 2009) but contrasts the situation in each of dppf{Au[SC(OR)═ NC6H4NO2-p]}2, for R = Me (Ho et al., 2006) and i-Pr (Ho & Tiekink, 2009), whereby the molecule has a U-shaped conformation allowing for the formation of intramolecular Au···Au interactions.

In the crystal structure of (I), the primary interactions between the dinuclear molecules are of the type C–H···π, Table 1. These are arranged so as to define columns along the a direction in which reside the solvent dichloromethane molecules.

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of dppf(AuCl)2 and EtOC(═S)N(H)Ph in the presence of base (Hall et al., 1993). Crystals were obtained from the slow evaporation of a dichloromethane solution.

Refinement

The H atoms were geometrically placed (C—H = 0.94-0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 2.84 and 1.47 e Å-3, respectively, were located within the C21–C26 ring (0.95 Å from the C21 atom) and 0.58 Å from the Cl1 atom, respectively. The binuclear molecule co-crystallised with a disordered dichloromethane solvent molecule. This was modelled over a centre of inversion with a full weight chloride and half-weight methylene group. The C and Cl atoms were treated with the ISOR command in SHELXL-97 to impose isotropic character to the anisotropic displacement parameters (Sheldrick, 2008). The following reflections (0,1,0), (0,-1,1) and (0,0,1) were omitted in the final refinement as they were obscured by the beamstop.

Figures

Fig. 1.
Molecular structure of the dinuclear complex (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level. The dinuclear molecule is located about a centre of inversion and unlabelled atoms are related by the symmetry operation ...
Fig. 2.
A view in projection down the a axis of the crystal packing in (I) highlighting the interactions between binuclear molecules mediated by C–H···π contacts (purple dashed lines). The binuclear molecules define columns ...

Crystal data

[Au2Fe(C9H10NOS)2(C17H14P)2]·CH2Cl2Z = 1
Mr = 1393.69F(000) = 678
Triclinic, P1Dx = 1.846 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 8.442 (3) ÅCell parameters from 4599 reflections
b = 12.957 (5) Åθ = 2.6–30.1°
c = 13.440 (5) ŵ = 6.42 mm1
α = 108.045 (8)°T = 223 K
β = 103.177 (8)°Needle, orange
γ = 106.853 (8)°0.49 × 0.04 × 0.04 mm
V = 1253.5 (9) Å3

Data collection

Bruker SMART CCD diffractometer5688 independent reflections
Radiation source: fine-focus sealed tube5025 reflections with I > 2σ(I)
graphiteRint = 0.030
ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −10→10
Tmin = 0.577, Tmax = 1k = −16→11
8618 measured reflectionsl = −16→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.106H-atom parameters constrained
S = 1.02w = 1/[σ2(Fo2) + (0.0684P)2] where P = (Fo2 + 2Fc2)/3
5688 reflections(Δ/σ)max = 0.001
307 parametersΔρmax = 2.84 e Å3
13 restraintsΔρmin = −1.47 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Au0.54576 (2)0.149128 (17)0.224945 (16)0.02842 (9)
Fe0.00000.00000.00000.0234 (2)
S10.6884 (2)0.11576 (15)0.37230 (12)0.0387 (3)
P10.42701 (17)0.19357 (11)0.08358 (11)0.0240 (3)
O10.4392 (5)0.1685 (4)0.4324 (3)0.0397 (10)
N10.6859 (6)0.2200 (5)0.5809 (4)0.0368 (11)
C10.6054 (8)0.1739 (5)0.4754 (5)0.0317 (11)
C20.8589 (8)0.2308 (5)0.6274 (5)0.0344 (12)
C30.8983 (9)0.1323 (6)0.6232 (6)0.0422 (14)
H30.80920.05610.58400.051*
C41.0693 (9)0.1475 (6)0.6769 (6)0.0439 (14)
H41.09520.08100.67390.053*
C51.2007 (9)0.2566 (6)0.7341 (5)0.0434 (15)
H51.31630.26490.76900.052*
C61.1636 (8)0.3563 (6)0.7409 (6)0.0440 (15)
H61.25290.43230.78080.053*
C70.9909 (8)0.3404 (6)0.6873 (5)0.0394 (13)
H70.96420.40700.69240.047*
C80.3614 (8)0.2141 (7)0.5128 (6)0.0466 (16)
H8A0.44120.29440.56580.056*
H8B0.34080.16460.55460.056*
C90.1920 (10)0.2139 (8)0.4508 (6)0.0551 (19)
H9A0.13700.24360.50310.083*
H9B0.11420.13420.39830.083*
H9C0.21390.26400.41060.083*
C100.2261 (7)0.0814 (4)−0.0219 (4)0.0255 (10)
C110.1892 (7)−0.0416 (5)−0.0552 (5)0.0312 (11)
H110.2615−0.0753−0.02470.037*
C120.0209 (8)−0.1038 (5)−0.1443 (5)0.0377 (14)
H12−0.0363−0.1860−0.18330.045*
C13−0.0434 (8)−0.0202 (5)−0.1629 (5)0.0372 (13)
H13−0.1520−0.0377−0.21610.045*
C140.0802 (7)0.0937 (5)−0.0894 (5)0.0304 (11)
H140.06930.1650−0.08530.036*
C150.5783 (7)0.2270 (4)0.0097 (5)0.0268 (10)
C160.5327 (8)0.1678 (5)−0.1046 (5)0.0320 (11)
H160.41850.1101−0.14790.038*
C170.6581 (9)0.1949 (6)−0.1545 (5)0.0395 (13)
H170.62820.1551−0.23190.047*
C180.8269 (8)0.2804 (6)−0.0905 (6)0.0426 (15)
H180.91020.2990−0.12470.051*
C190.8716 (8)0.3371 (6)0.0215 (6)0.0425 (14)
H190.98610.39450.06430.051*
C200.7489 (7)0.3110 (5)0.0738 (5)0.0335 (12)
H200.78120.34980.15150.040*
C210.3847 (7)0.3269 (5)0.1315 (5)0.0294 (11)
C220.3700 (7)0.3903 (5)0.0660 (5)0.0321 (11)
H220.37740.3630−0.00560.038*
C230.3444 (8)0.4938 (5)0.1063 (6)0.0372 (13)
H230.33350.53630.06150.045*
C240.3348 (8)0.5355 (5)0.2118 (6)0.0379 (13)
H240.31990.60680.23930.046*
C250.3471 (9)0.4717 (6)0.2762 (6)0.0454 (15)
H250.33790.49880.34730.055*
C260.3728 (8)0.3689 (5)0.2371 (5)0.0353 (12)
H260.38240.32650.28210.042*
Cl10.1902 (6)0.5357 (4)0.5501 (4)0.1365 (14)
C270.0112 (19)0.5715 (19)0.548 (2)0.085 (6)0.50
H27A0.03270.64340.53420.103*0.50
H27B0.00180.59000.62230.103*0.50

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au0.02700 (12)0.03400 (13)0.02496 (13)0.01353 (9)0.00771 (8)0.01222 (9)
Fe0.0212 (4)0.0246 (5)0.0227 (5)0.0075 (4)0.0068 (4)0.0093 (4)
S10.0421 (8)0.0566 (9)0.0265 (7)0.0317 (7)0.0117 (6)0.0171 (6)
P10.0230 (6)0.0252 (6)0.0242 (6)0.0100 (5)0.0086 (5)0.0098 (5)
O10.031 (2)0.054 (3)0.028 (2)0.0181 (19)0.0081 (17)0.0088 (19)
N10.031 (2)0.049 (3)0.021 (2)0.010 (2)0.0066 (19)0.009 (2)
C10.032 (3)0.037 (3)0.026 (3)0.015 (2)0.009 (2)0.013 (2)
C20.033 (3)0.049 (3)0.023 (3)0.016 (2)0.011 (2)0.016 (2)
C30.041 (3)0.040 (3)0.040 (3)0.009 (3)0.010 (3)0.019 (3)
C40.051 (4)0.048 (4)0.042 (4)0.025 (3)0.013 (3)0.027 (3)
C50.035 (3)0.064 (4)0.033 (3)0.021 (3)0.009 (3)0.023 (3)
C60.030 (3)0.051 (4)0.038 (3)0.007 (3)0.007 (3)0.015 (3)
C70.031 (3)0.047 (3)0.038 (3)0.015 (3)0.012 (3)0.014 (3)
C80.037 (3)0.061 (4)0.036 (3)0.022 (3)0.014 (3)0.007 (3)
C90.052 (4)0.083 (5)0.037 (4)0.042 (4)0.016 (3)0.018 (4)
C100.026 (2)0.026 (2)0.025 (2)0.0100 (19)0.008 (2)0.0101 (19)
C110.034 (3)0.027 (3)0.034 (3)0.013 (2)0.015 (2)0.011 (2)
C120.033 (3)0.032 (3)0.035 (3)0.003 (2)0.018 (3)0.002 (2)
C130.032 (3)0.046 (3)0.023 (3)0.007 (2)0.006 (2)0.011 (2)
C140.026 (2)0.041 (3)0.027 (3)0.012 (2)0.010 (2)0.019 (2)
C150.024 (2)0.028 (2)0.035 (3)0.012 (2)0.013 (2)0.017 (2)
C160.032 (3)0.033 (3)0.034 (3)0.013 (2)0.012 (2)0.015 (2)
C170.049 (3)0.049 (3)0.037 (3)0.027 (3)0.027 (3)0.022 (3)
C180.038 (3)0.053 (4)0.065 (4)0.028 (3)0.033 (3)0.040 (3)
C190.027 (3)0.040 (3)0.061 (4)0.011 (2)0.016 (3)0.022 (3)
C200.027 (3)0.032 (3)0.038 (3)0.008 (2)0.010 (2)0.013 (2)
C210.020 (2)0.028 (2)0.035 (3)0.0059 (19)0.008 (2)0.010 (2)
C220.030 (3)0.027 (3)0.038 (3)0.011 (2)0.013 (2)0.011 (2)
C230.028 (3)0.035 (3)0.048 (4)0.012 (2)0.011 (3)0.019 (3)
C240.034 (3)0.026 (3)0.044 (3)0.010 (2)0.009 (3)0.005 (2)
C250.048 (4)0.047 (4)0.032 (3)0.019 (3)0.016 (3)0.003 (3)
C260.038 (3)0.032 (3)0.035 (3)0.014 (2)0.015 (3)0.011 (2)
Cl10.1389 (16)0.1335 (16)0.1363 (16)0.0487 (10)0.0470 (10)0.0583 (10)
Cl1'0.1389 (16)0.1335 (16)0.1363 (16)0.0487 (10)0.0470 (10)0.0583 (10)
C270.086 (6)0.085 (6)0.085 (6)0.033 (2)0.030 (2)0.035 (2)

Geometric parameters (Å, °)

Au—P12.2562 (15)C9—H9C0.9700
Au—S12.3029 (16)C10—C111.429 (7)
Fe—C102.030 (5)C10—C141.435 (7)
Fe—C10i2.030 (5)C11—C121.437 (8)
Fe—C14i2.043 (5)C11—H110.9400
Fe—C142.043 (5)C12—C131.405 (9)
Fe—C11i2.046 (5)C12—H120.9400
Fe—C112.046 (5)C13—C141.406 (8)
Fe—C13i2.054 (6)C13—H130.9400
Fe—C132.054 (6)C14—H140.9400
Fe—C122.068 (5)C15—C161.387 (8)
Fe—C12i2.068 (5)C15—C201.395 (7)
S1—C11.755 (6)C16—C171.396 (8)
P1—C101.788 (5)C16—H160.9400
P1—C211.817 (5)C17—C181.391 (9)
P1—C151.824 (5)C17—H170.9400
O1—C11.362 (7)C18—C191.357 (10)
O1—C81.449 (7)C18—H180.9400
N1—C11.277 (7)C19—C201.399 (8)
N1—C21.398 (7)C19—H190.9400
C2—C71.368 (9)C20—H200.9400
C2—C31.398 (9)C21—C221.387 (8)
C3—C41.384 (9)C21—C261.393 (8)
C3—H30.9400C22—C231.382 (8)
C4—C51.360 (10)C22—H220.9400
C4—H40.9400C23—C241.383 (9)
C5—C61.397 (10)C23—H230.9400
C5—H50.9400C24—C251.376 (10)
C6—C71.393 (9)C24—H240.9400
C6—H60.9400C25—C261.372 (9)
C7—H70.9400C25—H250.9400
C8—C91.480 (9)C26—H260.9400
C8—H8A0.9800Cl1—C271.701 (5)
C8—H8B0.9800Cl1—C27ii1.74 (2)
C9—H9A0.9700C27—H27A0.9800
C9—H9B0.9700C27—H27B0.9800
P1—Au—S1175.35 (5)C9—C8—H8B110.1
C10—Fe—C10i180.0 (3)H8A—C8—H8B108.4
C10—Fe—C14i138.7 (2)C8—C9—H9A109.5
C10i—Fe—C14i41.3 (2)C8—C9—H9B109.5
C10—Fe—C1441.3 (2)H9A—C9—H9B109.5
C10i—Fe—C14138.7 (2)C8—C9—H9C109.5
C14i—Fe—C14180.0 (3)H9A—C9—H9C109.5
C10—Fe—C11i139.0 (2)H9B—C9—H9C109.5
C10i—Fe—C11i41.0 (2)C11—C10—C14108.0 (5)
C14i—Fe—C11i69.0 (2)C11—C10—P1122.9 (4)
C14—Fe—C11i111.0 (2)C14—C10—P1129.0 (4)
C10—Fe—C1141.0 (2)C11—C10—Fe70.1 (3)
C10i—Fe—C11139.0 (2)C14—C10—Fe69.9 (3)
C14i—Fe—C11111.0 (2)P1—C10—Fe127.3 (3)
C14—Fe—C1169.0 (2)C10—C11—C12107.0 (5)
C11i—Fe—C11180.0 (3)C10—C11—Fe68.9 (3)
C10—Fe—C13i111.7 (2)C12—C11—Fe70.4 (3)
C10i—Fe—C13i68.3 (2)C10—C11—H11126.5
C14i—Fe—C13i40.1 (2)C12—C11—H11126.5
C14—Fe—C13i139.9 (2)Fe—C11—H11125.8
C11i—Fe—C13i68.3 (2)C13—C12—C11108.1 (5)
C11—Fe—C13i111.7 (2)C13—C12—Fe69.5 (3)
C10—Fe—C1368.3 (2)C11—C12—Fe68.7 (3)
C10i—Fe—C13111.7 (2)C13—C12—H12126.0
C14i—Fe—C13139.9 (2)C11—C12—H12126.0
C14—Fe—C1340.1 (2)Fe—C12—H12127.4
C11i—Fe—C13111.7 (2)C14—C13—C12109.3 (5)
C11—Fe—C1368.3 (2)C14—C13—Fe69.5 (3)
C13i—Fe—C13180.0 (3)C12—C13—Fe70.6 (4)
C10—Fe—C1268.4 (2)C14—C13—H13125.3
C10i—Fe—C12111.6 (2)C12—C13—H13125.3
C14i—Fe—C12112.2 (2)Fe—C13—H13126.1
C14—Fe—C1267.8 (2)C13—C14—C10107.5 (5)
C11i—Fe—C12139.1 (2)C13—C14—Fe70.3 (3)
C11—Fe—C1240.9 (2)C10—C14—Fe68.9 (3)
C13i—Fe—C12140.1 (3)C13—C14—H14126.2
C13—Fe—C1239.9 (3)C10—C14—H14126.2
C10—Fe—C12i111.6 (2)Fe—C14—H14126.1
C10i—Fe—C12i68.4 (2)C16—C15—C20120.0 (5)
C14i—Fe—C12i67.8 (2)C16—C15—P1122.6 (4)
C14—Fe—C12i112.2 (2)C20—C15—P1117.3 (4)
C11i—Fe—C12i40.9 (2)C15—C16—C17119.3 (5)
C11—Fe—C12i139.1 (2)C15—C16—H16120.3
C13i—Fe—C12i39.9 (3)C17—C16—H16120.3
C13—Fe—C12i140.1 (3)C18—C17—C16120.4 (6)
C12—Fe—C12i180.0 (4)C18—C17—H17119.8
C1—S1—Au102.6 (2)C16—C17—H17119.8
C10—P1—C21106.8 (2)C19—C18—C17120.1 (5)
C10—P1—C15105.4 (2)C19—C18—H18119.9
C21—P1—C15103.4 (2)C17—C18—H18119.9
C10—P1—Au115.79 (18)C18—C19—C20120.7 (6)
C21—P1—Au112.8 (2)C18—C19—H19119.7
C15—P1—Au111.77 (18)C20—C19—H19119.7
C1—O1—C8116.2 (5)C15—C20—C19119.5 (6)
C1—N1—C2121.6 (5)C15—C20—H20120.3
N1—C1—O1120.3 (5)C19—C20—H20120.3
N1—C1—S1126.6 (5)C22—C21—C26119.1 (5)
O1—C1—S1113.1 (4)C22—C21—P1121.0 (4)
C7—C2—N1119.6 (6)C26—C21—P1119.8 (5)
C7—C2—C3118.6 (6)C23—C22—C21119.7 (6)
N1—C2—C3121.5 (6)C23—C22—H22120.1
C4—C3—C2119.6 (6)C21—C22—H22120.1
C4—C3—H3120.2C22—C23—C24120.7 (6)
C2—C3—H3120.2C22—C23—H23119.6
C5—C4—C3121.4 (6)C24—C23—H23119.6
C5—C4—H4119.3C25—C24—C23119.5 (6)
C3—C4—H4119.3C25—C24—H24120.2
C4—C5—C6119.9 (6)C23—C24—H24120.2
C4—C5—H5120.1C26—C25—C24120.3 (6)
C6—C5—H5120.1C26—C25—H25119.8
C7—C6—C5118.4 (6)C24—C25—H25119.8
C7—C6—H6120.8C25—C26—C21120.6 (6)
C5—C6—H6120.8C25—C26—H26119.7
C2—C7—C6122.1 (6)C21—C26—H26119.7
C2—C7—H7119.0Cl1ii—C27—Cl1116.5 (11)
C6—C7—H7119.0Cl1—C27—H27A108.2
O1—C8—C9108.1 (5)Cl1ii—C27—H27A108.2
O1—C8—H8A110.1Cl1—C27—H27B108.2
C9—C8—H8A110.1Cl1ii—C27—H27B108.2
O1—C8—H8B110.1H27A—C27—H27B107.3
P1—Au—S1—C1106.4 (6)C11i—Fe—C12—C1359.9 (5)
S1—Au—P1—C10160.4 (6)C11—Fe—C12—C13−120.1 (5)
S1—Au—P1—C21−76.2 (6)C13i—Fe—C12—C13180.000 (1)
S1—Au—P1—C1539.7 (6)C12i—Fe—C12—C13−49 (34)
C2—N1—C1—O1−177.6 (5)C10—Fe—C12—C1138.5 (3)
C2—N1—C1—S11.0 (9)C10i—Fe—C12—C11−141.5 (3)
C8—O1—C1—N1−1.7 (8)C14i—Fe—C12—C11−96.8 (3)
C8—O1—C1—S1179.5 (5)C14—Fe—C12—C1183.2 (3)
Au—S1—C1—N1−149.8 (5)C11i—Fe—C12—C11180.0
Au—S1—C1—O128.9 (5)C13i—Fe—C12—C11−59.9 (5)
C1—N1—C2—C7115.8 (7)C13—Fe—C12—C11120.1 (5)
C1—N1—C2—C3−70.2 (8)C12i—Fe—C12—C1171 (32)
C7—C2—C3—C4−1.5 (9)C11—C12—C13—C140.9 (6)
N1—C2—C3—C4−175.5 (6)Fe—C12—C13—C1458.9 (4)
C2—C3—C4—C50.0 (10)C11—C12—C13—Fe−58.0 (4)
C3—C4—C5—C61.1 (10)C10—Fe—C13—C14−38.5 (3)
C4—C5—C6—C7−0.6 (10)C10i—Fe—C13—C14141.5 (3)
N1—C2—C7—C6176.1 (6)C14i—Fe—C13—C14180.0
C3—C2—C7—C62.0 (9)C11i—Fe—C13—C1497.2 (4)
C5—C6—C7—C2−1.0 (10)C11—Fe—C13—C14−82.8 (4)
C1—O1—C8—C9173.2 (6)C13i—Fe—C13—C1454 (58)
C21—P1—C10—C11−160.4 (4)C12—Fe—C13—C14−120.4 (5)
C15—P1—C10—C1190.1 (5)C12i—Fe—C13—C1459.6 (5)
Au—P1—C10—C11−33.9 (5)C10—Fe—C13—C1281.9 (3)
C21—P1—C10—C1422.0 (6)C10i—Fe—C13—C12−98.1 (3)
C15—P1—C10—C14−87.4 (5)C14i—Fe—C13—C12−59.6 (5)
Au—P1—C10—C14148.5 (4)C14—Fe—C13—C12120.4 (5)
C21—P1—C10—Fe−71.4 (4)C11i—Fe—C13—C12−142.4 (3)
C15—P1—C10—Fe179.2 (3)C11—Fe—C13—C1237.6 (3)
Au—P1—C10—Fe55.1 (4)C13i—Fe—C13—C12174 (58)
C10i—Fe—C10—C11−160 (45)C12i—Fe—C13—C12180.000 (1)
C14i—Fe—C10—C1161.1 (5)C12—C13—C14—C10−0.5 (6)
C14—Fe—C10—C11−118.9 (5)Fe—C13—C14—C1059.1 (4)
C11i—Fe—C10—C11180.0C12—C13—C14—Fe−59.6 (4)
C13i—Fe—C10—C1198.6 (4)C11—C10—C14—C13−0.1 (6)
C13—Fe—C10—C11−81.4 (4)P1—C10—C14—C13177.8 (4)
C12—Fe—C10—C11−38.4 (4)Fe—C10—C14—C13−60.0 (4)
C12i—Fe—C10—C11141.6 (4)C11—C10—C14—Fe59.9 (4)
C10i—Fe—C10—C14−41 (45)P1—C10—C14—Fe−122.2 (4)
C14i—Fe—C10—C14180.0C10—Fe—C14—C13118.7 (5)
C11i—Fe—C10—C14−61.1 (5)C10i—Fe—C14—C13−61.3 (5)
C11—Fe—C10—C14118.9 (5)C14i—Fe—C14—C13−135 (100)
C13i—Fe—C10—C14−142.5 (3)C11i—Fe—C14—C13−99.3 (4)
C13—Fe—C10—C1437.5 (3)C11—Fe—C14—C1380.7 (4)
C12—Fe—C10—C1480.5 (4)C13i—Fe—C14—C13180.0
C12i—Fe—C10—C14−99.5 (4)C12—Fe—C14—C1336.7 (4)
C10i—Fe—C10—P183 (45)C12i—Fe—C14—C13−143.3 (4)
C14i—Fe—C10—P1−55.7 (5)C10i—Fe—C14—C10180.0
C14—Fe—C10—P1124.3 (5)C14i—Fe—C14—C10106 (100)
C11i—Fe—C10—P163.2 (5)C11i—Fe—C14—C10142.0 (3)
C11—Fe—C10—P1−116.8 (5)C11—Fe—C14—C10−38.0 (3)
C13i—Fe—C10—P1−18.3 (4)C13i—Fe—C14—C1061.3 (5)
C13—Fe—C10—P1161.7 (4)C13—Fe—C14—C10−118.7 (5)
C12—Fe—C10—P1−155.2 (4)C12—Fe—C14—C10−82.1 (3)
C12i—Fe—C10—P124.8 (4)C12i—Fe—C14—C1097.9 (3)
C14—C10—C11—C120.6 (6)C10—P1—C15—C16−2.2 (5)
P1—C10—C11—C12−177.4 (4)C21—P1—C15—C16−114.1 (5)
Fe—C10—C11—C1260.4 (4)Au—P1—C15—C16124.4 (4)
C14—C10—C11—Fe−59.8 (4)C10—P1—C15—C20−178.4 (4)
P1—C10—C11—Fe122.2 (4)C21—P1—C15—C2069.7 (5)
C10i—Fe—C11—C10180.0Au—P1—C15—C20−51.9 (5)
C14i—Fe—C11—C10−141.8 (3)C20—C15—C16—C17−1.2 (8)
C14—Fe—C11—C1038.2 (3)P1—C15—C16—C17−177.3 (4)
C11i—Fe—C11—C108(100)C15—C16—C17—C18−0.1 (9)
C13i—Fe—C11—C10−98.6 (4)C16—C17—C18—C190.8 (9)
C13—Fe—C11—C1081.4 (4)C17—C18—C19—C20−0.3 (10)
C12—Fe—C11—C10118.1 (5)C16—C15—C20—C191.7 (8)
C12i—Fe—C11—C10−61.9 (5)P1—C15—C20—C19178.1 (4)
C10—Fe—C11—C12−118.1 (5)C18—C19—C20—C15−0.9 (9)
C10i—Fe—C11—C1261.9 (5)C10—P1—C21—C22−73.8 (5)
C14i—Fe—C11—C12100.1 (4)C15—P1—C21—C2237.1 (5)
C14—Fe—C11—C12−79.9 (4)Au—P1—C21—C22157.9 (4)
C11i—Fe—C11—C12−110 (100)C10—P1—C21—C26108.5 (5)
C13i—Fe—C11—C12143.3 (4)C15—P1—C21—C26−140.7 (4)
C13—Fe—C11—C12−36.7 (4)Au—P1—C21—C26−19.8 (5)
C12i—Fe—C11—C12180.0C26—C21—C22—C230.2 (8)
C10—C11—C12—C13−0.9 (6)P1—C21—C22—C23−177.6 (4)
Fe—C11—C12—C1358.5 (4)C21—C22—C23—C240.6 (9)
C10—C11—C12—Fe−59.4 (4)C22—C23—C24—C25−1.4 (9)
C10—Fe—C12—C13−81.5 (4)C23—C24—C25—C261.5 (10)
C10i—Fe—C12—C1398.5 (4)C24—C25—C26—C21−0.7 (10)
C14i—Fe—C12—C13143.1 (3)C22—C21—C26—C25−0.1 (9)
C14—Fe—C12—C13−36.9 (3)P1—C21—C26—C25177.7 (5)

Symmetry codes: (i) −x, −y, −z; (ii) −x, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C15–C20 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C9—H9a···Cg1iii0.972.753.623 (9)150
C11—H11···Cg2iv0.942.783.619 (7)150

Symmetry codes: (iii) x−1, y, z; (iv) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2245).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, U.S.A.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem.46, 561–570.
  • Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem.45, 8165–8174. [PubMed]
  • Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.
  • Ho, S. Y. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1466–m1467. [PMC free article] [PubMed]
  • Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tadbuppa, P. P. & Tiekink, E. R. T. (2009). Acta Cryst. E65, m1597. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography