PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1441.
Published online 2010 May 22. doi:  10.1107/S1600536810018374
PMCID: PMC2979646

1-(5-Hydroxy-7-methoxy-2,2-dimethyl-2H-chromen-6-yl)ethan-1-one

Abstract

The title chromene, C14H16O4, was isolated from the stems of Polyalthia plagioneura Diels. The mol­ecular structure is stabilized by an intra­molecular O–H(...)O hydrogen bond, which generates an S(6) ring. In the crystal, the mol­ecules are linked by C—H(...)O inter­actions, generating [010] chains.

Related literature

For medicinal and botanical background to the title compound, see: Allan et al. (1969 [triangle]); Manandhar et al. (1985 [triangle]); Li et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1441-scheme1.jpg

Experimental

Crystal data

  • C14H16O4
  • M r = 248.28
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1441-efi1.jpg
  • a = 7.3797 (9) Å
  • b = 8.0066 (10) Å
  • c = 11.2878 (14) Å
  • α = 77.948 (1)°
  • β = 77.411 (1)°
  • γ = 84.465 (2)°
  • V = 635.67 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.45 × 0.40 × 0.39 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1997 [triangle]) T min = 0.959, T max = 0.964
  • 3335 measured reflections
  • 2217 independent reflections
  • 1361 reflections with I > 2σ(I)
  • R int = 0.019

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.159
  • S = 1.08
  • 2217 reflections
  • 167 parameters
  • H-atom parameters constrained
  • Δρmax = 0.26 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018374/hb5429sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018374/hb5429Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National Natural Science Foundation of China (20862005), the Program for New Century Excellent Talents in Universities (NCET-08-0656) and the University Graduate Student Innovation Science Research Project of Hainan Province (No. Hxwsy2009-10).

supplementary crystallographic information

Comment

The title chromene was isolated from plants such as Remirea maritima (Allan et al., 1969), Euodia lunu-ankenda (Manandhar et al., 1985) and Evodia lepta (Li et al., 1997). In our ongoing studies of natural products with biological activity we isolated the chromene from the 75% EtOH extract of the stems of Polyalthia plagioneura, a plant used as a flok medicine which were collected from Bawangling, Hainan Province, P. R. China. We have undertaken the X-ray crystal structure analysis of the title compound in order to establish its molecular structure and relative stereochemistry.

The hydrogen bonds and angles are listed in Table 1.

Experimental

Air-dried stems of Polyalthia plagioneura (20 kg) were ground and percolated (4 × 3 h) with 75% EtOH at 60°C, which was suspended in 5 L water and then partitioned with chloroform, ethyl acetate and n-BuOH, successively, yielding a chloroform extract, an ethyl acetate extract and a n-BuOH extract, respectively. The chloroform extract was subjected to a silica gel CC column using petroleum ether as first eluent and then increasing the polarity with EtOAc, to afford 33 fractions. Fraction 5 was further separated by column chromatography with a gradient of chloroform–ether–EtOAc to give the title compound. The crude product was recrystallised from ethyl acetate to yield colourless blocks of (I).

Refinement

H atoms bonded to C atoms were palced in geometrically calculated position and were refined using a riding model, with Uiso(H) = 1.2 Ueq(C). H atoms attached to O atoms were found in a difference Fourier synthesis and were refined using a riding model, with the O—H distances fixed as initially found and with Uiso(H) values set at 1.5 Ueq(O).

Figures

Fig. 1.
View of the title compound with displacement ellipsoids drawn at the 30% probability level.

Crystal data

C14H16O4Z = 2
Mr = 248.28F(000) = 264
Triclinic, P1Dx = 1.297 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.3797 (9) ÅCell parameters from 1208 reflections
b = 8.0066 (10) Åθ = 2.6–24.1°
c = 11.2878 (14) ŵ = 0.10 mm1
α = 77.948 (1)°T = 298 K
β = 77.411 (1)°Block, colourless
γ = 84.465 (2)°0.45 × 0.40 × 0.39 mm
V = 635.67 (14) Å3

Data collection

Bruker SMART CCD diffractometer2217 independent reflections
Radiation source: fine-focus sealed tube1361 reflections with I > 2σ(I)
graphiteRint = 0.019
ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan (SADABS; Bruker, 1997)h = −8→8
Tmin = 0.959, Tmax = 0.964k = −8→9
3335 measured reflectionsl = −13→13

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0801P)2] where P = (Fo2 + 2Fc2)/3
2217 reflections(Δ/σ)max < 0.001
167 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1836 (2)0.20248 (18)0.25325 (13)0.0529 (5)
O20.2390 (2)0.76852 (19)0.29434 (15)0.0659 (5)
H20.25080.82410.34530.099*
O30.2742 (3)0.8220 (2)0.49648 (17)0.0720 (6)
O40.2615 (2)0.30717 (19)0.63521 (13)0.0604 (5)
C10.2377 (3)0.2453 (3)0.11859 (19)0.0534 (7)
C20.2004 (4)0.4317 (3)0.0732 (2)0.0584 (7)
H2A0.18130.4684−0.00720.070*
C30.1938 (3)0.5467 (3)0.1434 (2)0.0546 (7)
H30.17510.66240.11160.066*
C40.2160 (3)0.4900 (3)0.27044 (19)0.0431 (6)
C50.2349 (3)0.6020 (3)0.3466 (2)0.0451 (6)
C60.2498 (3)0.5431 (3)0.47159 (19)0.0419 (5)
C70.2432 (3)0.3632 (3)0.51639 (19)0.0429 (6)
C80.2232 (3)0.2528 (3)0.44272 (19)0.0433 (5)
H80.21840.13600.47410.052*
C90.2101 (3)0.3175 (3)0.32112 (19)0.0411 (5)
C100.1212 (4)0.1353 (3)0.0740 (2)0.0695 (8)
H10A0.14430.01720.10900.104*
H10B0.15340.1517−0.01460.104*
H10C−0.00810.16720.09920.104*
C110.4434 (4)0.1947 (4)0.0849 (2)0.0791 (8)
H11A0.51310.26100.11910.119*
H11B0.48310.2157−0.00350.119*
H11C0.46400.07540.11760.119*
C120.2686 (3)0.6685 (3)0.5448 (2)0.0501 (6)
C130.2816 (3)0.6241 (3)0.6777 (2)0.0598 (7)
H13A0.29030.72670.70700.090*
H13B0.39000.55000.68670.090*
H13C0.17270.56700.72510.090*
C140.2647 (4)0.1275 (3)0.6819 (2)0.0717 (8)
H14A0.14810.08450.68110.108*
H14B0.28460.10510.76520.108*
H14C0.36350.07200.63100.108*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0793 (12)0.0426 (10)0.0413 (9)−0.0099 (8)−0.0147 (8)−0.0124 (7)
O20.0982 (14)0.0346 (10)0.0677 (11)−0.0076 (8)−0.0267 (10)−0.0039 (8)
O30.1000 (15)0.0432 (11)0.0818 (13)−0.0087 (9)−0.0265 (10)−0.0213 (9)
O40.0955 (14)0.0452 (10)0.0444 (9)−0.0021 (8)−0.0218 (8)−0.0104 (8)
C10.0680 (18)0.0559 (16)0.0383 (12)−0.0089 (12)−0.0100 (11)−0.0119 (11)
C20.0750 (18)0.0597 (17)0.0403 (13)−0.0108 (13)−0.0151 (12)−0.0023 (12)
C30.0694 (17)0.0430 (14)0.0500 (14)−0.0079 (11)−0.0164 (12)0.0010 (11)
C40.0455 (14)0.0384 (13)0.0461 (13)−0.0026 (10)−0.0111 (10)−0.0077 (10)
C50.0464 (14)0.0335 (12)0.0547 (14)−0.0029 (9)−0.0110 (10)−0.0059 (10)
C60.0422 (13)0.0392 (13)0.0467 (13)−0.0003 (10)−0.0109 (10)−0.0126 (10)
C70.0487 (14)0.0425 (13)0.0374 (12)−0.0004 (10)−0.0089 (10)−0.0087 (10)
C80.0545 (15)0.0321 (12)0.0432 (12)−0.0029 (10)−0.0097 (10)−0.0069 (10)
C90.0452 (14)0.0394 (13)0.0410 (12)−0.0041 (10)−0.0089 (10)−0.0114 (10)
C100.097 (2)0.0722 (19)0.0490 (14)−0.0204 (15)−0.0228 (14)−0.0173 (13)
C110.076 (2)0.092 (2)0.0690 (18)−0.0014 (15)−0.0054 (15)−0.0255 (16)
C120.0460 (14)0.0452 (15)0.0628 (15)−0.0024 (11)−0.0109 (11)−0.0191 (12)
C130.0643 (17)0.0611 (17)0.0636 (16)−0.0029 (12)−0.0148 (12)−0.0322 (13)
C140.113 (2)0.0547 (17)0.0450 (14)−0.0050 (15)−0.0215 (14)0.0016 (12)

Geometric parameters (Å, °)

O1—C91.367 (2)C6—C121.460 (3)
O1—C11.460 (2)C7—C81.371 (3)
O2—C51.341 (2)C8—C91.383 (3)
O2—H20.8200C8—H80.9300
O3—C121.237 (3)C10—H10A0.9600
O4—C71.354 (2)C10—H10B0.9600
O4—C141.424 (3)C10—H10C0.9600
C1—C21.493 (3)C11—H11A0.9600
C1—C101.513 (3)C11—H11B0.9600
C1—C111.519 (3)C11—H11C0.9600
C2—C31.326 (3)C12—C131.490 (3)
C2—H2A0.9300C13—H13A0.9600
C3—C41.451 (3)C13—H13B0.9600
C3—H30.9300C13—H13C0.9600
C4—C91.381 (3)C14—H14A0.9600
C4—C51.401 (3)C14—H14B0.9600
C5—C61.415 (3)C14—H14C0.9600
C6—C71.426 (3)
C9—O1—C1118.89 (16)O1—C9—C4120.78 (18)
C5—O2—H2109.5O1—C9—C8116.67 (18)
C7—O4—C14118.00 (17)C4—C9—C8122.51 (19)
O1—C1—C2110.59 (18)C1—C10—H10A109.5
O1—C1—C10104.22 (17)C1—C10—H10B109.5
C2—C1—C10112.3 (2)H10A—C10—H10B109.5
O1—C1—C11106.92 (19)C1—C10—H10C109.5
C2—C1—C11111.2 (2)H10A—C10—H10C109.5
C10—C1—C11111.3 (2)H10B—C10—H10C109.5
C3—C2—C1122.2 (2)C1—C11—H11A109.5
C3—C2—H2A118.9C1—C11—H11B109.5
C1—C2—H2A118.9H11A—C11—H11B109.5
C2—C3—C4119.3 (2)C1—C11—H11C109.5
C2—C3—H3120.3H11A—C11—H11C109.5
C4—C3—H3120.3H11B—C11—H11C109.5
C9—C4—C5117.9 (2)O3—C12—C6119.8 (2)
C9—C4—C3118.6 (2)O3—C12—C13116.2 (2)
C5—C4—C3123.4 (2)C6—C12—C13124.0 (2)
O2—C5—C4116.2 (2)C12—C13—H13A109.5
O2—C5—C6121.7 (2)C12—C13—H13B109.5
C4—C5—C6122.1 (2)H13A—C13—H13B109.5
C5—C6—C7116.38 (19)C12—C13—H13C109.5
C5—C6—C12118.6 (2)H13A—C13—H13C109.5
C7—C6—C12125.0 (2)H13B—C13—H13C109.5
O4—C7—C8121.91 (19)O4—C14—H14A109.5
O4—C7—C6116.15 (18)O4—C14—H14B109.5
C8—C7—C6121.93 (19)H14A—C14—H14B109.5
C7—C8—C9119.2 (2)O4—C14—H14C109.5
C7—C8—H8120.4H14A—C14—H14C109.5
C9—C8—H8120.4H14B—C14—H14C109.5
C9—O1—C1—C2−36.1 (3)C5—C6—C7—O4178.63 (19)
C9—O1—C1—C10−157.02 (19)C12—C6—C7—O4−2.0 (3)
C9—O1—C1—C1185.1 (2)C5—C6—C7—C8−0.1 (3)
O1—C1—C2—C325.1 (3)C12—C6—C7—C8179.2 (2)
C10—C1—C2—C3141.0 (2)O4—C7—C8—C9−178.26 (18)
C11—C1—C2—C3−93.6 (3)C6—C7—C8—C90.4 (3)
C1—C2—C3—C4−2.5 (4)C1—O1—C9—C425.4 (3)
C2—C3—C4—C9−11.4 (3)C1—O1—C9—C8−157.02 (19)
C2—C3—C4—C5171.5 (2)C5—C4—C9—O1177.07 (19)
C9—C4—C5—O2−179.63 (18)C3—C4—C9—O1−0.1 (3)
C3—C4—C5—O2−2.6 (3)C5—C4—C9—C8−0.4 (3)
C9—C4—C5—C60.7 (3)C3—C4—C9—C8−177.6 (2)
C3—C4—C5—C6177.72 (19)C7—C8—C9—O1−177.73 (18)
O2—C5—C6—C7179.90 (18)C7—C8—C9—C4−0.2 (3)
C4—C5—C6—C7−0.4 (3)C5—C6—C12—O3−1.2 (3)
O2—C5—C6—C120.5 (3)C7—C6—C12—O3179.5 (2)
C4—C5—C6—C12−179.84 (19)C5—C6—C12—C13178.7 (2)
C14—O4—C7—C81.7 (3)C7—C6—C12—C13−0.6 (4)
C14—O4—C7—C6−177.06 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O2—H2···O30.821.752.479 (2)147
C8—H8···O3i0.932.483.374 (3)162

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5429).

References

  • Allan, R. D., Correll, R. L. & Wells, R. J. (1969). Tetrahedron Lett.53, 4669–4672.
  • Bruker (1997). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Li, G. L., Zeng, J. F., Song, C. Q. & Zhu, D. Y. (1997). Phytochemistry, 44, 1175–1178.
  • Manandhar, M. D., Hussaini, F. A., Kapil, R. S. & Shoeb, A. (1985). Phytochemistry, 24, 199–200.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography