PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1346–o1347.
Published online 2010 May 15. doi:  10.1107/S1600536810017150
PMCID: PMC2979640

(E)-3-(3-Chloro­phen­yl)-1-(4-methoxy­phen­yl)prop-2-en-1-one

Abstract

The title mol­ecule, C16H13ClO2, is trans with respect to the C=C double bond. The dihedral angles between the mean plane of the prop-2-en-1-one unit and those of the 3-chloro- and 4-meth­oxy-substituted benzene rings are 20.93 (9) and 20.42 (10)°, respectively, and the dihedral angle between the mean planes of the two benzene rings is 40.96 (5)°. The crystal structure is stabilized by weak inter­molecular C—H(...)O hydrogen bonds, forming chains along the b axis.

Related literature

For the biological activity of chalcones, see: Dimmock et al. (1999 [triangle]); Opletalova & Sedivy (1999 [triangle]); Lin et al. (2002 [triangle]); Nowakowska (2007 [triangle]). For the synthesis and biological activity of related chalcone derivatives, see: Hussain et al. (2009 [triangle]). For non-linear optical studies of chalcones, see: Sarojini et al. (2006 [triangle]); Poornesh et al. (2009 [triangle]); Shettigar et al. (2006 [triangle]; 2008 [triangle]). For related structures, see: Rosli et al. (2006 [triangle]); Patil et al. (2006 [triangle]); Harrison et al. (2006 [triangle]); Fun et al. (2008 [triangle]); Jasinski et al. (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1346-scheme1.jpg

Experimental

Crystal data

  • C16H13ClO2
  • M r = 272.71
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1346-efi1.jpg
  • a = 10.3415 (6) Å
  • b = 3.8938 (1) Å
  • c = 16.9152 (10) Å
  • β = 107.582 (2)°
  • V = 649.32 (6) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.29 mm−1
  • T = 173 K
  • 0.18 × 0.16 × 0.04 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.950, T max = 0.989
  • 2099 measured reflections
  • 2099 independent reflections
  • 2075 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.026
  • wR(F 2) = 0.073
  • S = 1.15
  • 2099 reflections
  • 173 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.13 e Å−3
  • Δρmin = −0.14 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 687 Friedel pairs
  • Flack parameter: 0.08 (6)

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017150/lh5044sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017150/lh5044Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful to the Institute of Chemistry, University of the Punjab, Lahore, and the PCSIR Laboratories Complex, Lahore, for the provision of necessary facilities.

supplementary crystallographic information

Comment

Chalcones are well known for their biological activities (Dimmock et al., 1999). These have been reported as potential anti-fungal chemotherapeutic (Opletalova & Sedivy, 1999), anti-tuberculosis (Lin et al., 2002) and anti-infective & anti-inflammatory agents (Nowakowska, 2007). In addition, few among these have found their use as organic non-linear optical materials (NLO) due to their good SHG (second-harmonic generation) conversion efficiencies (Sarojini et al., 2006; Poornesh et al., 2009; Shettigar et al., 2006; 2008). In continuation of our work on chalcones (Hussain et al., 2009) and in view of the importance of chloro chalcones, the synthesis and crystal structure of the title compound, (I), is presented in this article.

The title molecule (Fig. 1) exhibits an E configuration with respect to the C═C double bond, the torsion angle C–C═C–C being -177.75 (17)°. The dihedral angle between the mean planes of the 3-chloro and 4-methoxy substituted benzene rings is 40.96 (5)°. The dihedral angles between the mean planes of the prop-2-en-1-one unit and those of the 3-chloro and 4-methoxy substitued benzene rings are 20.93 (9) and 20.42 (10)°, respectively. The geometrical parameters for (I) are consistent with those of some recently reported chalcone derivatives closely related to (I) (Rosli et al., 2006; Patil et al., 2006; Harrison et al., 2006; Fun et al.; 2008; Jasinski et al., 2010). The structure is stabilized by intermolecular interactions of the type C—H···O resulting in polymeric chains along the b-axis (Fig. 2, Tab. 1)

Experimental

A mixture of 3-chlorobenzaldehyde (0.01 moles, 1.13 g), 4-methoxyacetophenone (0.01 moles, 1.37 ml) and sodium hydroxide solution (10%, 30 ml) was stirred at room temperature for 6 hrs. Precipitates obtained were poured into ice-cold water (500 ml) and left to stand for 2 hours followed by filtration of the resultant solid which was dried and crystallized from ethanol by slow evaporation.

Refinement

The H-atoms were clocated from difference Fourier maps and were included in the refinement at geometrically idealized positions in riding-model approximation with C—H = 0.95 and 0.98 Å for aryl and methyl type H-atoms, respectively; the Uiso(H) were allowed at 1.2Ueq(C). The final difference map was essentially featurless.

Figures

Fig. 1.
The title molecule plotted with the displacement ellipsoids at 50% probability level (Farrugia, 1997).
Fig. 2.
Unit cell packing of the title molecule, viewed down the b-axis. Intramolecular interactions of the type C—H···O are shown as dashed lines and H-atoms not involved in hydrogen bonding interactions have been excluded.

Crystal data

C16H13ClO2F(000) = 284
Mr = 272.71Dx = 1.395 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 1186 reflections
a = 10.3415 (6) Åθ = 1.0–27.5°
b = 3.8938 (1) ŵ = 0.29 mm1
c = 16.9152 (10) ÅT = 173 K
β = 107.582 (2)°Plate, colourless
V = 649.32 (6) Å30.18 × 0.16 × 0.04 mm
Z = 2

Data collection

Nonius KappaCCD diffractometer2099 independent reflections
Radiation source: fine-focus sealed tube2075 reflections with I > 2σ(I)
graphiteRint = 0.000
ω and [var phi] scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −12→12
Tmin = 0.950, Tmax = 0.989k = −4→4
2099 measured reflectionsl = −20→19

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.026H-atom parameters constrained
wR(F2) = 0.073w = 1/[σ2(Fo2) + (0.0313P)2 + 0.151P] where P = (Fo2 + 2Fc2)/3
S = 1.15(Δ/σ)max < 0.001
2099 reflectionsΔρmax = 0.13 e Å3
173 parametersΔρmin = −0.14 e Å3
1 restraintAbsolute structure: Flack (1983), 687 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.08 (6)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.28612 (5)0.84356 (13)−0.07337 (2)0.03991 (15)
O11.26882 (11)0.5880 (4)0.35589 (7)0.0330 (3)
O20.67938 (12)0.6392 (4)0.39544 (8)0.0413 (4)
C10.85889 (16)0.6328 (4)0.33613 (10)0.0247 (4)
C20.90929 (17)0.7521 (4)0.27311 (10)0.0267 (4)
H20.84900.84860.22420.032*
C31.04622 (18)0.7304 (5)0.28148 (10)0.0290 (4)
H31.07970.81250.23850.035*
C41.13507 (16)0.5884 (4)0.35290 (10)0.0253 (4)
C51.08649 (17)0.4606 (5)0.41555 (10)0.0264 (4)
H51.14650.35850.46370.032*
C60.94934 (17)0.4851 (5)0.40622 (10)0.0261 (4)
H60.91580.39890.44880.031*
C71.36446 (17)0.4448 (5)0.42797 (12)0.0365 (5)
H7A1.45610.46450.42290.044*
H7B1.34300.20220.43300.044*
H7C1.35980.56970.47730.044*
C80.71475 (17)0.6756 (5)0.33309 (10)0.0287 (4)
C90.61392 (17)0.7636 (5)0.25241 (10)0.0284 (4)
H90.63570.72070.20260.034*
C100.49465 (16)0.9000 (5)0.24782 (10)0.0276 (4)
H100.47800.94680.29900.033*
C110.38516 (17)0.9868 (5)0.17214 (11)0.0252 (3)
C120.38969 (16)0.8919 (5)0.09297 (10)0.0267 (4)
H120.46620.77350.08650.032*
C130.28167 (17)0.9727 (5)0.02468 (10)0.0280 (4)
C140.16803 (17)1.1442 (5)0.03152 (11)0.0311 (4)
H140.09461.1960−0.01640.037*
C150.16385 (18)1.2383 (5)0.10952 (12)0.0325 (4)
H150.08701.35670.11540.039*
C160.27161 (17)1.1606 (5)0.17948 (11)0.0290 (4)
H160.26771.22680.23280.035*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0526 (3)0.0409 (3)0.0234 (2)−0.0034 (2)0.00716 (18)0.0004 (2)
O10.0243 (6)0.0444 (8)0.0294 (6)0.0004 (6)0.0068 (5)0.0020 (6)
O20.0302 (6)0.0675 (10)0.0268 (6)0.0045 (7)0.0093 (5)0.0055 (7)
C10.0258 (8)0.0247 (8)0.0214 (8)−0.0002 (7)0.0037 (6)−0.0034 (7)
C20.0300 (9)0.0279 (9)0.0201 (8)0.0004 (7)0.0044 (6)0.0020 (7)
C30.0323 (8)0.0330 (9)0.0217 (8)−0.0033 (7)0.0082 (6)−0.0001 (7)
C40.0255 (8)0.0254 (8)0.0242 (8)−0.0018 (7)0.0061 (6)−0.0042 (7)
C50.0280 (8)0.0268 (8)0.0216 (8)0.0014 (7)0.0034 (6)−0.0002 (7)
C60.0313 (8)0.0264 (8)0.0207 (8)−0.0007 (7)0.0080 (6)−0.0009 (7)
C70.0260 (8)0.0436 (12)0.0349 (10)0.0017 (8)0.0017 (7)0.0037 (9)
C80.0284 (8)0.0325 (9)0.0235 (8)−0.0005 (8)0.0055 (7)−0.0017 (8)
C90.0262 (8)0.0349 (10)0.0227 (8)−0.0006 (7)0.0053 (6)−0.0029 (8)
C100.0294 (8)0.0307 (10)0.0222 (8)−0.0002 (8)0.0071 (6)0.0001 (7)
C110.0244 (7)0.0245 (8)0.0263 (8)−0.0041 (7)0.0069 (6)0.0010 (7)
C120.0259 (8)0.0266 (9)0.0270 (8)−0.0022 (7)0.0070 (6)−0.0001 (8)
C130.0331 (9)0.0246 (8)0.0250 (8)−0.0075 (7)0.0067 (7)0.0008 (7)
C140.0276 (8)0.0280 (9)0.0319 (9)−0.0034 (8)0.0003 (7)0.0064 (8)
C150.0249 (8)0.0292 (10)0.0427 (10)0.0014 (7)0.0090 (7)0.0026 (8)
C160.0284 (8)0.0298 (9)0.0291 (9)−0.0014 (8)0.0091 (7)−0.0001 (8)

Geometric parameters (Å, °)

Cl1—C131.747 (2)C7—H7C0.9800
O1—C41.369 (2)C8—C91.486 (2)
O1—C71.431 (2)C9—C101.323 (2)
O2—C81.225 (2)C9—H90.9500
C1—C61.393 (2)C10—C111.470 (2)
C1—C21.400 (2)C10—H100.9500
C1—C81.485 (2)C11—C161.393 (2)
C2—C31.383 (2)C11—C121.404 (2)
C2—H20.9500C12—C131.379 (2)
C3—C41.393 (2)C12—H120.9500
C3—H30.9500C13—C141.387 (3)
C4—C51.395 (2)C14—C151.383 (3)
C5—C61.382 (2)C14—H140.9500
C5—H50.9500C15—C161.392 (2)
C6—H60.9500C15—H150.9500
C7—H7A0.9800C16—H160.9500
C7—H7B0.9800
C4—O1—C7117.56 (13)O2—C8—C9120.56 (15)
C6—C1—C2118.44 (15)C1—C8—C9118.44 (14)
C6—C1—C8118.99 (14)C10—C9—C8121.97 (15)
C2—C1—C8122.48 (14)C10—C9—H9119.0
C3—C2—C1120.48 (15)C8—C9—H9119.0
C3—C2—H2119.8C9—C10—C11127.06 (15)
C1—C2—H2119.8C9—C10—H10116.5
C2—C3—C4120.00 (15)C11—C10—H10116.5
C2—C3—H3120.0C16—C11—C12119.01 (16)
C4—C3—H3120.0C16—C11—C10118.85 (15)
O1—C4—C3115.28 (14)C12—C11—C10122.11 (15)
O1—C4—C5124.30 (15)C13—C12—C11119.15 (16)
C3—C4—C5120.42 (15)C13—C12—H12120.4
C6—C5—C4118.77 (15)C11—C12—H12120.4
C6—C5—H5120.6C12—C13—C14122.17 (16)
C4—C5—H5120.6C12—C13—Cl1118.86 (14)
C5—C6—C1121.85 (15)C14—C13—Cl1118.94 (13)
C5—C6—H6119.1C15—C14—C13118.62 (15)
C1—C6—H6119.1C15—C14—H14120.7
O1—C7—H7A109.5C13—C14—H14120.7
O1—C7—H7B109.5C14—C15—C16120.40 (16)
H7A—C7—H7B109.5C14—C15—H15119.8
O1—C7—H7C109.5C16—C15—H15119.8
H7A—C7—H7C109.5C15—C16—C11120.65 (16)
H7B—C7—H7C109.5C15—C16—H16119.7
O2—C8—C1120.99 (15)C11—C16—H16119.7
C6—C1—C2—C3−1.5 (3)O2—C8—C9—C1019.7 (3)
C8—C1—C2—C3174.97 (16)C1—C8—C9—C10−160.40 (17)
C1—C2—C3—C40.2 (3)C8—C9—C10—C11−177.75 (17)
C7—O1—C4—C3−179.98 (16)C9—C10—C11—C16−173.68 (18)
C7—O1—C4—C50.4 (2)C9—C10—C11—C128.1 (3)
C2—C3—C4—O1−178.27 (15)C16—C11—C12—C13−0.1 (3)
C2—C3—C4—C51.4 (3)C10—C11—C12—C13178.09 (16)
O1—C4—C5—C6178.08 (17)C11—C12—C13—C14−0.2 (3)
C3—C4—C5—C6−1.5 (2)C11—C12—C13—Cl1−178.31 (13)
C4—C5—C6—C10.2 (3)C12—C13—C14—C150.4 (3)
C2—C1—C6—C51.4 (3)Cl1—C13—C14—C15178.47 (14)
C8—C1—C6—C5−175.25 (16)C13—C14—C15—C16−0.2 (3)
C6—C1—C8—O212.6 (3)C14—C15—C16—C11−0.1 (3)
C2—C1—C8—O2−163.87 (19)C12—C11—C16—C150.2 (3)
C6—C1—C8—C9−167.35 (17)C10—C11—C16—C15−178.02 (16)
C2—C1—C8—C916.2 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···O2i0.982.583.545 (2)168
C16—H16···O1ii0.952.513.424 (2)162

Symmetry codes: (i) x+1, y, z; (ii) x−1, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5044).

References

  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Dimmock, J. R., Elias, D. W., Beazely, M. A. & Kandepu, N. M. (1999). Curr. Med. Chem.6, 1125–1149. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fun, H.-K., Jebas, S. R., Patil, P. S. & Dharmaprakash, S. M. (2008). Acta Cryst. E64, o1525. [PMC free article] [PubMed]
  • Harrison, W. T. A., Yathirajan, H. S., Sarojini, B. K., Narayana, B. & Indira, J. (2006). Acta Cryst. E62, o1647–o1649.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Hussain, T., Siddiqui, H. L., Zia-ur-Rehman, M., Yasinzai, M. M. & Pervez, M. (2009). Eur. J. Med. Chem.44, 4654–4660. [PubMed]
  • Jasinski, J. P., Butcher, R. J., Narayana, B., Samshuddin, S. & Yathirajan, H. S. (2010). Acta Cryst. E66, o269–o270. [PMC free article] [PubMed]
  • Lin, Y. M., Zhou, Y., Flavin, M. T., Zhou, L. M., Nie, W. & Chen, F. C. (2002). Bioorg. Med. Chem.10, 2795–2802. [PubMed]
  • Nowakowska, Z. (2007). Eur. J. Med. Chem.42, 125–137. [PubMed]
  • Opletalova, V. & Sedivy, D. (1999). Ceska Slov. Farm.48, 252–255. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
  • Patil, P. S., Dharmaprakash, S. M., Fun, H.-K. & Karthikeyan, M. S. (2006). J. Cryst. Growth, 297, 111–116.
  • Poornesh, P., Shettigar, S., Umesh, G., Manjunatha, K. B., Prakash Kamath, K., Sarojini, B. K. & Narayana, B. (2009). Opt. Mater.31, 854–859.
  • Rosli, M. M., Patil, P. S., Fun, H.-K., Razak, I. A. & Dharmaprakash, S. M. (2006). Acta Cryst. E62, o1466–o1468.
  • Sarojini, B. K., Narayana, B., Ashalatha, B. V., Indira, J. & Lobo, K. J. (2006). J. Cryst. Growth, 295, 54–59.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shettigar, S., Chandrasekharan, K., Umesh, G., Sarojini, B. K. & Narayana, B. (2006). Polymer, 47, 3565–3567.
  • Shettigar, S., Umesh, G., Chandrasekharan, K., Sarojini, B. K. & Narayana, B. (2008). Opt. Mater.30, 1297–1303.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography