PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1308.
Published online 2010 May 12. doi:  10.1107/S1600536810016478
PMCID: PMC2979635

1-(4-Methoxy­phen­yl)imidazolidine-2,4-dione

Abstract

In the title compound, C10H10N2O3, the dihedral angle between the benzene and imidazolidine rings is 6.0 (4)°, consistent with an essentially planar mol­ecule. In the crystal, inter­molecular N—H(...)O hydrogen bonding between centrosymmetrically related mol­ecules leads to loosely associated dimeric aggregates. These are connected into a three-dimensional network by C—H(...)O inter­actions, as well as π–π inter­actions [centroid–centroid distances = 3.705 (3) and 3.622 (3) Å] between the imidazolidine and benzene rings.

Related literature

For related structures, see: Gerdil (1960 [triangle]). For the synthesis, see: Niwata et al. (1997 [triangle]); Kurzer et al. (1963 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1308-scheme1.jpg

Experimental

Crystal data

  • C10H10N2O3
  • M r = 206.20
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1308-efi1.jpg
  • a = 4.9993 (10) Å
  • b = 6.1566 (12) Å
  • c = 30.052 (6) Å
  • β = 93.91 (3)°
  • V = 922.8 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 113 K
  • 0.24 × 0.12 × 0.10 mm

Data collection

  • Rigaku Saturn CCD area-detector diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005 [triangle]) T min = 0.974, T max = 0.989
  • 6955 measured reflections
  • 2203 independent reflections
  • 1507 reflections with I > 2σ(I)
  • R int = 0.078

Refinement

  • R[F 2 > 2σ(F 2)] = 0.064
  • wR(F 2) = 0.151
  • S = 1.05
  • 2203 reflections
  • 142 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.44 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016478/tk2669sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016478/tk2669Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This project was supported by the National Natural Science Foundation of China under contract No. 20972112 and the Tianjin Key Program of Natural Science Foundation of China under contract No. 09JCZDJC21600.

supplementary crystallographic information

Comment

During an investigation of new anti-diabetic drugs, we found that imidazolidinediones (IZD's) have good anti-diabetic activities. The crystal structure determination of the title compound, (I), was undertaken to investigate the relationship between structure and anti-diabetic activity.

In title compound, C10H10N2O3, bond lengths and angles are normal and in a good agreement with those reported previously (Gerdil, 1960). The dihedral angle between the benzene ring (C4—C9) and imidazolidine ring (C1—C3/N1/N2) is 6.0 (4) °. In the crystal packing, intermolecular N—H···O hydrogen bonding between centrosymmetrically related molecules lead to loosely associated dimeric aggregates, Table 1. These aggregates are connected into the 3-D crystal structure by C—H···O and π–π interactions, the latter occurring between the imidazolidine and benzene rings, Table 1.

Experimental

Compound (I) (1.13 g, 55% yield) was prepared according to the reported procedure of (Niwata et al., 1997), using 1-(4-methoxyphenyl)urea (0.010 mol; Kurzer et al., 1963), sodium hydride (0.022 mol), N,N-dimethylformamide (20 ml), and ethyl chloroacetate (0.0120 mol. Colourless single crystals suitable for X-ray diffraction analysis were obtained by recrystallization from a mixture of methanol and water (1:1 V/V).

Refinement

All C-bound H atoms were found on difference maps, but included in the final cycles of refinement using a riding model with C—H = 0.95–0.99 Å, and with Uiso(H) = 1.2Ueq(C) for aryl- and methylene-H atoms, and 1.5Ueq(C) for the methyl H atoms. The N–H1 atom was refined freely.

Figures

Fig. 1.
View of the title compound showing atom labelling, with displacement ellipsoids drawn at the 40% probability level.

Crystal data

C10H10N2O3F(000) = 432
Mr = 206.20Dx = 1.484 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 196 reflections
a = 4.9993 (10) Åθ = 2.0–27.9°
b = 6.1566 (12) ŵ = 0.11 mm1
c = 30.052 (6) ÅT = 113 K
β = 93.91 (3)°Prism, colourless
V = 922.8 (3) Å30.24 × 0.12 × 0.10 mm
Z = 4

Data collection

Rigaku Saturn CCD area-detector diffractometer2203 independent reflections
Radiation source: rotating anode1507 reflections with I > 2σ(I)
multilayerRint = 0.078
Detector resolution: 7.31 pixels mm-1θmax = 27.9°, θmin = 2.7°
ω and [var phi] scansh = −6→4
Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005)k = −8→7
Tmin = 0.974, Tmax = 0.989l = −34→39
6955 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.064H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.151w = 1/[σ2(Fo2) + (0.0718P)2] where P = (Fo2 + 2Fc2)/3
S = 1.05(Δ/σ)max = 0.001
2203 reflectionsΔρmax = 0.44 e Å3
142 parametersΔρmin = −0.40 e Å3
1 restraintExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 1.95 (8)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.1590 (2)0.2744 (2)0.50596 (4)0.0270 (4)
O20.4023 (2)−0.2177 (2)0.40235 (4)0.0286 (4)
O31.2460 (3)0.2947 (2)0.28363 (4)0.0303 (4)
N10.2393 (3)−0.0069 (2)0.45821 (5)0.0232 (4)
N20.5536 (3)0.1341 (2)0.41800 (5)0.0217 (4)
C10.2749 (3)0.1953 (3)0.47530 (6)0.0221 (4)
C20.4866 (3)0.3027 (3)0.44955 (5)0.0213 (4)
H2A0.41550.43400.43380.026*
H2B0.64480.34330.46940.026*
C30.4027 (3)−0.0471 (3)0.42284 (6)0.0221 (4)
C40.7341 (3)0.1737 (3)0.38439 (5)0.0209 (4)
C50.7790 (3)0.0195 (3)0.35134 (6)0.0265 (4)
H50.6900−0.11680.35140.032*
C60.9526 (3)0.0659 (3)0.31876 (6)0.0272 (5)
H60.9814−0.03910.29640.033*
C71.0854 (3)0.2637 (3)0.31826 (6)0.0236 (4)
C81.0464 (3)0.4155 (3)0.35116 (6)0.0244 (4)
H81.13850.55050.35130.029*
C90.8710 (3)0.3692 (3)0.38415 (6)0.0230 (4)
H90.84520.47350.40680.028*
C101.3963 (4)0.4914 (3)0.28380 (7)0.0339 (5)
H10A1.27320.61530.28110.051*
H10B1.51080.49150.25860.051*
H10C1.50820.50270.31180.051*
H10.113 (3)−0.100 (3)0.4673 (7)0.045 (6)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0294 (7)0.0210 (8)0.0312 (7)−0.0022 (5)0.0070 (5)−0.0019 (6)
O20.0365 (7)0.0170 (8)0.0321 (7)−0.0036 (5)0.0020 (5)−0.0035 (5)
O30.0331 (7)0.0295 (9)0.0295 (7)−0.0001 (5)0.0103 (5)−0.0008 (6)
N10.0260 (7)0.0171 (9)0.0264 (8)−0.0035 (5)0.0012 (6)0.0003 (6)
N20.0269 (8)0.0151 (8)0.0232 (8)−0.0022 (5)0.0035 (6)−0.0020 (6)
C10.0243 (8)0.0183 (10)0.0231 (8)−0.0002 (6)−0.0027 (6)0.0020 (7)
C20.0263 (8)0.0152 (9)0.0226 (9)−0.0019 (6)0.0031 (6)−0.0019 (7)
C30.0253 (8)0.0171 (10)0.0235 (9)−0.0010 (6)−0.0022 (6)0.0001 (7)
C40.0226 (8)0.0184 (10)0.0212 (8)0.0021 (6)−0.0006 (6)0.0015 (7)
C50.0320 (9)0.0181 (10)0.0295 (10)−0.0007 (7)0.0022 (7)−0.0018 (7)
C60.0339 (10)0.0229 (10)0.0249 (9)0.0025 (7)0.0026 (7)−0.0038 (8)
C70.0219 (9)0.0259 (11)0.0229 (9)0.0041 (6)0.0011 (6)0.0022 (7)
C80.0256 (9)0.0216 (10)0.0259 (9)−0.0029 (6)−0.0004 (7)0.0004 (7)
C90.0267 (9)0.0193 (10)0.0226 (8)−0.0008 (6)−0.0001 (6)−0.0020 (7)
C100.0310 (10)0.0359 (13)0.0353 (11)−0.0048 (8)0.0067 (8)0.0036 (9)

Geometric parameters (Å, °)

O1—C11.223 (2)C4—C91.385 (2)
O2—C31.217 (2)C4—C51.403 (2)
O3—C71.370 (2)C5—C61.382 (2)
O3—C101.425 (2)C5—H50.9500
N1—C11.354 (2)C6—C71.388 (3)
N1—C31.406 (2)C6—H60.9500
N1—H10.911 (10)C7—C81.384 (2)
N2—C31.360 (2)C8—C91.397 (2)
N2—C41.420 (2)C8—H80.9500
N2—C21.460 (2)C9—H90.9500
C1—C21.506 (2)C10—H10A0.9800
C2—H2A0.9900C10—H10B0.9800
C2—H2B0.9900C10—H10C0.9800
C7—O3—C10116.85 (14)C6—C5—C4120.02 (17)
C1—N1—C3112.37 (14)C6—C5—H5120.0
C1—N1—H1122.9 (15)C4—C5—H5120.0
C3—N1—H1124.5 (15)C5—C6—C7120.87 (17)
C3—N2—C4126.92 (15)C5—C6—H6119.6
C3—N2—C2111.09 (14)C7—C6—H6119.6
C4—N2—C2121.66 (14)O3—C7—C8124.53 (17)
O1—C1—N1126.52 (17)O3—C7—C6115.84 (16)
O1—C1—C2126.75 (17)C8—C7—C6119.62 (16)
N1—C1—C2106.72 (15)C7—C8—C9119.67 (17)
N2—C2—C1102.84 (14)C7—C8—H8120.2
N2—C2—H2A111.2C9—C8—H8120.2
C1—C2—H2A111.2C4—C9—C8121.02 (16)
N2—C2—H2B111.2C4—C9—H9119.5
C1—C2—H2B111.2C8—C9—H9119.5
H2A—C2—H2B109.1O3—C10—H10A109.5
O2—C3—N2129.43 (17)O3—C10—H10B109.5
O2—C3—N1123.60 (16)H10A—C10—H10B109.5
N2—C3—N1106.95 (14)O3—C10—H10C109.5
C9—C4—C5118.78 (16)H10A—C10—H10C109.5
C9—C4—N2119.40 (15)H10B—C10—H10C109.5
C5—C4—N2121.82 (16)
C3—N1—C1—O1179.61 (16)C3—N2—C4—C5−0.8 (3)
C3—N1—C1—C2−0.94 (18)C2—N2—C4—C5−173.66 (15)
C3—N2—C2—C11.19 (18)C9—C4—C5—C6−1.4 (2)
C4—N2—C2—C1175.05 (14)N2—C4—C5—C6178.85 (15)
O1—C1—C2—N2179.32 (16)C4—C5—C6—C70.3 (3)
N1—C1—C2—N2−0.13 (17)C10—O3—C7—C84.6 (2)
C4—N2—C3—O26.1 (3)C10—O3—C7—C6−176.52 (15)
C2—N2—C3—O2179.53 (17)C5—C6—C7—O3−178.02 (15)
C4—N2—C3—N1−175.22 (14)C5—C6—C7—C80.9 (3)
C2—N2—C3—N1−1.77 (19)O3—C7—C8—C9177.92 (14)
C1—N1—C3—O2−179.49 (15)C6—C7—C8—C9−0.9 (2)
C1—N1—C3—N21.71 (19)C5—C4—C9—C81.4 (3)
C3—N2—C4—C9179.43 (16)N2—C4—C9—C8−178.85 (14)
C2—N2—C4—C96.6 (2)C7—C8—C9—C4−0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.91 (1)1.95 (1)2.8512 (19)172 (2)
C2—H2A···O2ii0.992.343.291 (2)160
C8—H8···O2iii0.952.423.203 (2)140
Cg1—···.Cg1iv..3.705 (3).
Cg1—···.Cg2v..3.622 (3).

Symmetry codes: (i) −x, −y, −z+1; (ii) x, y+1, z; (iii) x+1, y+1, z; (iv) −x+1, −y, −z; (v) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2669).

References

  • Gerdil, R. (1960). Acta Cryst.13, 165–166.
  • Kurzer, F., Arnold, R. T. & Krogh, L. C. (1963). Org. Synth.4, 49.
  • Niwata, S., Fukami, H., Sumida, M., Ito, A., Kakutani, S., Saitoh, M., Suzuki, K., Imoto, M., Shibata, H., Imajo, S., Kiso, Y., Tanaka, T., Nakazato, H., Ishihara, T., Takai, S., Yamamoto, D., Shiota, N., Miyazaki, M., Okunishi, H., Kinoshita, A., Urata, H. & Arakawa, K. (1997). J. Med. Chem 40, 2156–2163. [PubMed]
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography