PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m700.
Published online 2010 May 22. doi:  10.1107/S1600536810018738
PMCID: PMC2979629

catena-Poly[[bis­(nitrato-κ2 O,O′)zinc(II)]-μ-4,4′-bis­(pyrazol-1-ylmeth­yl)biphenyl-κ2 N 2:N 2′]

Abstract

In the title compound, [Zn(NO3)2(C20H18N4)]n, the ZnII atom lies on a crystallographic twofold axis and the coordination geometry can be considered as a slightly distorted tetra­hedron defined by two O atoms from two nitrate groups and two N atoms from two ligand mol­ecules. A distorted octa­hedron may be assumed when two of the symmetry-related nitrate O atoms, with Zn—O distances of 2.528 (2) Å, are added to the coordination environment. Another twofold axis, passing through the middle of the biphenyl bonds, is observed in the crystal structure. A chain along [101] is built up by the ligands linking the ZnII ions.

Related literature

For a related polymeric bis­(pyrazole) dinitratocobalt(II) structure, see: Chen et al. (1997 [triangle]). For the synthesis and structure of a three-dimensional polymeric Zn(II) network compound, see: Zhu et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m700-scheme1.jpg

Experimental

Crystal data

  • [Zn(NO3)2(C20H18N4)]
  • M r = 503.77
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m700-efi1.jpg
  • a = 14.088 (3) Å
  • b = 13.780 (3) Å
  • c = 10.744 (2) Å
  • β = 95.76 (3)°
  • V = 2075.2 (7) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 1.24 mm−1
  • T = 291 K
  • 0.47 × 0.31 × 0.27 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.595, T max = 0.728
  • 9881 measured reflections
  • 2361 independent reflections
  • 2107 reflections with I > 2σ(I)
  • R int = 0.027

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.072
  • S = 1.07
  • 2361 reflections
  • 150 parameters
  • H-atom parameters constrained
  • Δρmax = 0.29 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018738/si2259sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018738/si2259Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Special Funds for the Research of Scientific and Technological Innovative Talents of Harbin Municipal Science and Technology Bureau (2009RFXXG027), the Science and Technology Planning Project of Heilongjiang Province (GZ08A401) and Heilongjiang University for supporting this study.

supplementary crystallographic information

Comment

The structures of the metal derivative 1,4-bis(pyrazole) benzene are known for zinc and cobalt (Chen et al., 1997). In order to enrich the research of this kinds of ligand, a new ligand 4,4'-bis(pyrazole) biphenyl with longer spacer was synthesized, and which are used in the preparation of coordination compound with zinc dinitrate.

The central Zn atom lies on a crystallographic twofold axis and the coordination geometry can be considered as a slightly distorted tetrahedron defined by two O atoms from two nitrate groups and two N atoms from two ligand molecules. A distorted octahedron may be assumed when two of the C2 related nitrate oxygen atoms with Zn—O distances of 2.528 (2) Å are added (Table 1) to the coordination environment. Another twofold axis, passing through the middle of the biphenyl bonds, is observed in the crystal structure (Figure 1).

A one dimensional chain is built up by the ligands linking the ZnII ions along the [1 0 1] direction (Figure 2).

Experimental

The 4,4'-bis(pyrazole-1-ylmethyl) biphenyl was synthesized by the reaction of pyrazole and 4,4'-bis(chloro) bibenzene under alkaline condition (Zhu et al., 2002). Zinc(II) dinitrate hexahydrate (0.595 g, 2 mmol) and 4,4'-bis(pyrazole-1-ylmethyl) biphenyl (0.618 g, 2 mmol) were dissolved in ethanol (20 ml), colorless block-shaped crystals of the title compound were obtained by slow evaporation of ethanol solution after several days.

Refinement

H atoms bound to C atoms were placed in calculated positions and treated as riding on their parent atoms, with C—H = 0.93 Å (aromatic), C—H = 0.97 Å (methylene), and with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title compound, showing the atom-labeling scheme and displacement ellipsoids drawn at the 50% probability level. symmetry codes: i = -x + 1, y, -z - 0.5; ii = -x + 2, y, -z + 0.5
Fig. 2.
A view of the one dimensional structure of the title compound extending along the [1 0 1] direction.

Crystal data

[Zn(NO3)2(C20H18N4)]F(000) = 1032
Mr = 503.77Dx = 1.612 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 8577 reflections
a = 14.088 (3) Åθ = 3.5–27.5°
b = 13.780 (3) ŵ = 1.24 mm1
c = 10.744 (2) ÅT = 291 K
β = 95.76 (3)°Block, colorless
V = 2075.2 (7) Å30.47 × 0.31 × 0.27 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer2361 independent reflections
Radiation source: fine-focus sealed tube2107 reflections with I > 2σ(I)
graphiteRint = 0.027
ω scanθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −18→18
Tmin = 0.595, Tmax = 0.728k = −17→17
9881 measured reflectionsl = −13→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.072H-atom parameters constrained
S = 1.07w = 1/[σ2(Fo2) + (0.0366P)2 + 1.1611P] where P = (Fo2 + 2Fc2)/3
2361 reflections(Δ/σ)max = 0.001
150 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.88226 (13)0.85458 (13)0.30265 (17)0.0400 (4)
H10.92990.83280.36230.048*
C20.79425 (13)0.81078 (13)0.27656 (17)0.0422 (4)
H20.77190.75550.31380.051*
C30.74719 (12)0.86596 (12)0.18459 (17)0.0378 (4)
H30.68570.85500.14720.045*
C40.79018 (13)1.01784 (13)0.06773 (19)0.0448 (5)
H4A0.84461.02090.01920.054*
H4B0.78771.07850.11320.054*
C50.70008 (12)1.00840 (13)−0.02129 (16)0.0344 (4)
C60.68292 (12)0.92829 (13)−0.09799 (17)0.0394 (4)
H60.72500.8761−0.09100.047*
C70.60321 (12)0.92531 (13)−0.18549 (16)0.0371 (4)
H70.59130.8701−0.23450.045*
C80.54112 (11)1.00366 (12)−0.20065 (15)0.0304 (3)
C90.55789 (12)1.08310 (12)−0.12237 (16)0.0379 (4)
H90.51641.1357−0.12990.045*
C100.63608 (12)1.08471 (13)−0.03278 (16)0.0392 (4)
H100.64561.13790.02030.047*
N10.88943 (9)0.93271 (10)0.23026 (13)0.0336 (3)
N20.80483 (9)0.93853 (10)0.15759 (12)0.0307 (3)
N31.06552 (11)1.16224 (10)0.10426 (14)0.0389 (3)
O11.00867 (10)1.09113 (9)0.08271 (13)0.0476 (3)
O21.10427 (11)1.17141 (11)0.21293 (14)0.0588 (4)
O31.08004 (13)1.21789 (11)0.02032 (15)0.0678 (5)
Zn11.00001.027091 (19)0.25000.03491 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0374 (9)0.0386 (9)0.0404 (9)0.0011 (7)−0.0139 (7)0.0046 (8)
C20.0406 (10)0.0393 (9)0.0449 (10)−0.0062 (7)−0.0043 (8)0.0060 (8)
C30.0263 (8)0.0419 (9)0.0430 (9)−0.0074 (7)−0.0070 (7)−0.0014 (8)
C40.0330 (9)0.0453 (10)0.0506 (11)−0.0088 (7)−0.0235 (8)0.0106 (8)
C50.0252 (8)0.0407 (8)0.0342 (9)−0.0030 (6)−0.0121 (6)0.0055 (7)
C60.0300 (8)0.0422 (9)0.0424 (9)0.0094 (7)−0.0135 (7)−0.0017 (8)
C70.0343 (9)0.0380 (9)0.0359 (8)0.0042 (7)−0.0123 (7)−0.0071 (7)
C80.0227 (8)0.0379 (8)0.0285 (8)−0.0009 (6)−0.0080 (6)0.0003 (6)
C90.0301 (8)0.0374 (9)0.0428 (9)0.0065 (7)−0.0122 (7)−0.0038 (7)
C100.0372 (9)0.0378 (9)0.0386 (9)−0.0014 (7)−0.0151 (7)−0.0064 (7)
N10.0238 (6)0.0356 (7)0.0377 (7)−0.0008 (5)−0.0151 (5)0.0003 (6)
N20.0214 (6)0.0342 (6)0.0337 (7)−0.0018 (5)−0.0113 (5)−0.0008 (6)
N30.0339 (8)0.0359 (7)0.0456 (8)−0.0004 (6)−0.0022 (6)0.0005 (7)
O10.0461 (8)0.0409 (7)0.0521 (8)−0.0107 (6)−0.0130 (6)0.0012 (6)
O20.0503 (9)0.0668 (9)0.0550 (8)−0.0159 (7)−0.0154 (7)−0.0043 (7)
O30.0858 (12)0.0570 (9)0.0600 (9)−0.0229 (9)0.0047 (8)0.0089 (8)
Zn10.02434 (15)0.03443 (16)0.04240 (18)0.000−0.01422 (11)0.000

Geometric parameters (Å, °)

C1—N11.338 (2)C7—H70.9300
C1—C21.382 (2)C8—C91.386 (2)
C1—H10.9300C8—C8i1.490 (3)
C2—C31.365 (2)C9—C101.388 (2)
C2—H20.9300C9—H90.9300
C3—N21.338 (2)C10—H100.9300
C3—H30.9300N1—N21.3602 (17)
C4—N21.459 (2)N1—Zn12.0240 (14)
C4—C51.516 (2)N3—O31.217 (2)
C4—H4A0.9700N3—O21.245 (2)
C4—H4B0.9700N3—O11.2721 (19)
C5—C101.383 (2)O1—Zn12.0169 (14)
C5—C61.384 (3)O2—Zn12.5277 (16)
C6—C71.391 (2)Zn1—O1ii2.0169 (14)
C6—H60.9300Zn1—N1ii2.0240 (14)
C7—C81.389 (2)
N1—C1—C2110.62 (15)C8—C9—C10120.55 (15)
N1—C1—H1124.7C8—C9—H9119.7
C2—C1—H1124.7C10—C9—H9119.7
C3—C2—C1105.32 (16)C5—C10—C9120.98 (16)
C3—C2—H2127.3C5—C10—H10119.5
C1—C2—H2127.3C9—C10—H10119.5
N2—C3—C2108.18 (15)C1—N1—N2105.55 (13)
N2—C3—H3125.9C1—N1—Zn1123.95 (11)
C2—C3—H3125.9N2—N1—Zn1130.02 (11)
N2—C4—C5114.01 (14)C3—N2—N1110.32 (13)
N2—C4—H4A108.8C3—N2—C4130.89 (13)
C5—C4—H4A108.8N1—N2—C4118.79 (13)
N2—C4—H4B108.8O3—N3—O2122.73 (16)
C5—C4—H4B108.8O3—N3—O1120.02 (16)
H4A—C4—H4B107.6O2—N3—O1117.25 (15)
C10—C5—C6118.68 (14)N3—O1—Zn1105.56 (10)
C10—C5—C4119.23 (16)N3—O2—Zn181.99 (10)
C6—C5—C4121.94 (16)O1ii—Zn1—O1128.11 (8)
C5—C6—C7120.45 (15)O1ii—Zn1—N1105.05 (6)
C5—C6—H6119.8O1—Zn1—N1107.61 (6)
C7—C6—H6119.8O1ii—Zn1—N1ii107.61 (6)
C8—C7—C6120.83 (15)O1—Zn1—N1ii105.05 (6)
C8—C7—H7119.6N1—Zn1—N1ii100.03 (8)
C6—C7—H7119.6O1ii—Zn1—O283.36 (6)
C9—C8—C7118.41 (14)O1—Zn1—O255.06 (5)
C9—C8—C8i120.32 (11)N1—Zn1—O2160.46 (5)
C7—C8—C8i121.27 (11)N1ii—Zn1—O293.94 (6)

Symmetry codes: (i) −x+1, y, −z−1/2; (ii) −x+2, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2259).

References

  • Chen, J.-X., Goodgame, D. M. L., Menzer, S. & Williams, D. J. (1997). Polyhedron, 16, 1679–1687.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhu, H.-F., Zhao, W., Okamura, T., Fei, B.-L., Sun, W.-Y. & Ueyama, N. (2002). New J. Chem.26, 1277–1279.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography