PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m668.
Published online 2010 May 19. doi:  10.1107/S1600536810016284
PMCID: PMC2979620

Bis(μ-4-fluoro-2,6-diformyl­phenolato)bis­[diaqua­nickel(II)] dichloride

Abstract

In the title dinuclear nickel(II) complex, [Ni2(C8H4FO3)2(H2O)4]Cl2, synthesized by the reaction between 4-fluoro-2,6-diformyl­phenol and nickel(II) chloride in methanol, the coordination cation is located on an inversion center and the NiII atom adopts a slightly distorted octa­hedral coordination geometry. The two Ni atoms are bridged by two phenolate O atoms and the intra­molecular Ni(...)Ni distance is 3.0751 (9) Å. The crystal structure is stabilized by O—H(...)Cl hydrogen bonds.

Related literature

For the synthesis of related compounds and their properties, see: Thompson et al. (1996 [triangle]); Zhou et al. (2005 [triangle]); Raimondi et al. (2004 [triangle]); Taniguchi (1984 [triangle]); Mohanta et al. (1998 [triangle]); Wang et al. (1997 [triangle]). For related structures, see: Adhikary et al. (1987 [triangle]); Zhou et al. (2007 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m668-scheme1.jpg

Experimental

Crystal data

  • [Ni2(C8H4FO3)2(H2O)4]Cl2
  • M r = 594.61
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m668-efi1.jpg
  • a = 8.3299 (14) Å
  • b = 13.576 (2) Å
  • c = 9.9965 (17) Å
  • β = 114.623 (3)°
  • V = 1027.6 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 2.16 mm−1
  • T = 291 K
  • 0.26 × 0.22 × 0.20 mm

Data collection

  • Bruker SMART APEX CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.603, T max = 0.672
  • 5827 measured reflections
  • 2018 independent reflections
  • 1708 reflections with I > 2σ(I)
  • R int = 0.041

Refinement

  • R[F 2 > 2σ(F 2)] = 0.051
  • wR(F 2) = 0.119
  • S = 1.05
  • 2018 reflections
  • 157 parameters
  • 4 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.42 e Å−3
  • Δρmin = −0.94 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016284/gk2267sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016284/gk2267Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the National Science Foundation of China for financial support (No. 20871097).

supplementary crystallographic information

Comment

Phenoxide-bridged dinuclear complexes have been extensively studied for several decades, most of them were derived from the cyclocondensation of 2,6-diformyl-4-R-phenol and alkyldiamine in the presence of metal ions (Thompson et al.,1996; Zhou et al., 2005; Raimondi et al., 2004).With short distances between the two metal ions in the complexes, they show special electrical and magnetic properties (Mohanta et al., 1998; Wang et al., 1997). Adhikary et al. reported a phenoxide-bridged dinuclear nickel(II) complex, obtained directly from the mixture of 2,6-diformyl-4-methyl-phenol and nickel(II) perchlorate (Adhikary et al., 1987). Here we report the crystal structure of a new dinuclear NiII complex with fluorine substituent in the phenyl ring. The diference between the title complex and the one Adhikary reported is that they have different substituents in the phenyl ring and different counter-anions.

The coordination cation consists of two 2,6-diformyl-4-flurophenolate ligands, four water molecules, two NiII ions (Fig. 1). The chlorine ions do not participate in coordination to the Ni atoms. Each Ni atom has a slightly distorted octahedral coordination geometry and it deviates from the equatorial plane defined by four coordinating oxygen atoms of the organic ligand by 0.0266 (4) Å. The axial positions are occupied by two water molecules with Ni–O distances of 2.057 (4) Å and 2.067 (4) Å.The Ni—O distance in the basal plane is in the range of 1.995 (4) Å - 2.019 (3) Å. The presence of the two bridging phenolate O atoms gives rise to a short metal-metal contact of 3.0751 (9) Å that is slightly longer than those of binuclear nickel(II) complexes with macrocyclic phenoxo-bridging ligands (Zhou et al., 2007).

Experimental

2, 6-Diformyl-4-fluorophenol was prepared according to the literature method (Taniguchi, 1984). To a solution of 2,6-diformyl-4-fluorinphenol (1 mmol, 0.17 g) in absolute methanol (10 ml) was added a methanol solution (10 ml) containing NiCl22H2O (1 mmol, 0.17 g). The solution was stirred vigorously for 24 h at room temperature and filtrated. The dark-green block-shaped crystals suitable for X-ray diffraction analysis were obtained by slow evaporation of solvent over a period of two weeks.

Refinement

The H atoms of water molecules were found in a difference Fourier map, and the O—H distances were restrained to 0.85 (1) Å; their temperature factor was set to 1.2Ueq(O). All other H atoms were placed in calculated positions with C—H = 0.93 Å and included in the refinement in the riding-model approximation with U(H) set to 1.2Ueq(C).

Figures

Fig. 1.
A view of the title complex, showing the labeling of the non-H atoms and 30% probability displacement ellipsoids. Atoms with the suffix (*) are generated by the symmetry operation 1-x, 1-y, 1-z.

Crystal data

[Ni2(C8H4FO3)2(H2O)4]Cl2F(000) = 600
Mr = 594.61Dx = 1.922 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3902 reflections
a = 8.3299 (14) Åθ = 2.2–28.0°
b = 13.576 (2) ŵ = 2.16 mm1
c = 9.9965 (17) ÅT = 291 K
β = 114.623 (3)°Block, green
V = 1027.6 (3) Å30.26 × 0.22 × 0.20 mm
Z = 2

Data collection

Bruker SMART APEX CCD diffractometer2018 independent reflections
Radiation source: sealed tube1708 reflections with I > 2σ(I)
graphiteRint = 0.041
phi and ω scansθmax = 26.0°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −10→7
Tmin = 0.603, Tmax = 0.672k = −15→16
5827 measured reflectionsl = −8→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.051Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.119H atoms treated by a mixture of independent and constrained refinement
S = 1.05w = 1/[σ2(Fo2) + (0.06P)2 + 1.99P] where P = (Fo2 + 2Fc2)/3
2018 reflections(Δ/σ)max < 0.001
157 parametersΔρmax = 0.42 e Å3
4 restraintsΔρmin = −0.94 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2077 (6)0.3085 (3)0.2584 (5)0.0349 (11)
H10.11590.26470.20950.042*
C20.2373 (6)0.3811 (3)0.1689 (5)0.0281 (9)
C30.1336 (6)0.3705 (3)0.0166 (5)0.0331 (10)
H30.05590.3178−0.01820.040*
C40.1475 (7)0.4376 (4)−0.0792 (5)0.0401 (12)
C50.2548 (7)0.5179 (4)−0.0329 (5)0.0370 (11)
H50.26090.5630−0.10070.044*
C60.3552 (6)0.5318 (3)0.1172 (5)0.0276 (9)
C70.3474 (5)0.4643 (3)0.2223 (5)0.0228 (8)
C80.4651 (6)0.6193 (4)0.1539 (6)0.0356 (11)
H80.46800.65450.07520.043*
Cl10.16724 (17)0.66791 (9)0.64475 (15)0.0406 (3)
F10.0499 (5)0.4245 (3)−0.2256 (3)0.0555 (9)
Ni10.43045 (7)0.40202 (4)0.53212 (6)0.02194 (18)
O10.2874 (4)0.2955 (2)0.3923 (4)0.0318 (7)
O20.4438 (4)0.4760 (2)0.3627 (3)0.0249 (6)
O30.5544 (5)0.6519 (2)0.2770 (4)0.0351 (8)
O40.1900 (5)0.4629 (3)0.4960 (4)0.0415 (8)
H4A0.201 (8)0.502 (4)0.565 (5)0.050*
H4B0.116 (6)0.417 (3)0.484 (7)0.050*
O50.6594 (5)0.3234 (3)0.5759 (4)0.0402 (8)
H5C0.725 (7)0.313 (4)0.6662 (18)0.048*
H5A0.717 (7)0.354 (4)0.535 (6)0.048*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.034 (2)0.032 (2)0.034 (3)−0.0109 (19)0.008 (2)−0.002 (2)
C20.024 (2)0.025 (2)0.035 (2)−0.0003 (17)0.0122 (18)−0.0051 (18)
C30.028 (2)0.032 (2)0.034 (3)0.0002 (19)0.0079 (19)−0.010 (2)
C40.050 (3)0.042 (3)0.019 (2)0.012 (2)0.006 (2)−0.001 (2)
C50.055 (3)0.035 (3)0.018 (2)0.001 (2)0.012 (2)0.0028 (19)
C60.031 (2)0.027 (2)0.024 (2)−0.0020 (17)0.0109 (17)0.0029 (17)
C70.0206 (19)0.0228 (19)0.028 (2)0.0044 (15)0.0127 (17)0.0059 (17)
C80.039 (3)0.036 (3)0.036 (3)0.004 (2)0.020 (2)0.011 (2)
Cl10.0417 (7)0.0394 (6)0.0449 (7)0.0017 (5)0.0222 (6)−0.0033 (5)
F10.066 (2)0.0570 (19)0.0244 (15)−0.0102 (17)−0.0007 (14)−0.0047 (14)
Ni10.0241 (3)0.0209 (3)0.0230 (3)−0.0028 (2)0.0120 (2)0.0000 (2)
O10.0358 (16)0.0266 (16)0.0336 (18)−0.0065 (13)0.0149 (14)−0.0018 (13)
O20.0303 (15)0.0256 (14)0.0188 (14)−0.0044 (12)0.0103 (12)0.0019 (11)
O30.0455 (19)0.0349 (18)0.0282 (18)−0.0055 (15)0.0186 (15)0.0046 (14)
O40.0335 (18)0.040 (2)0.053 (2)0.0004 (15)0.0196 (17)−0.0023 (17)
O50.0359 (18)0.051 (2)0.0361 (19)0.0158 (16)0.0178 (15)0.0147 (17)

Geometric parameters (Å, °)

C1—O11.234 (6)C8—O31.226 (6)
C1—C21.421 (7)C8—H80.9300
C1—H10.9300Ni1—O3i1.998 (3)
C2—C31.410 (6)Ni1—O2i2.007 (3)
C2—C71.412 (6)Ni1—O22.012 (3)
C3—C41.361 (7)Ni1—O12.019 (3)
C3—H30.9300Ni1—O42.054 (4)
C4—F11.358 (5)Ni1—O52.067 (3)
C4—C51.364 (7)O2—Ni1i2.007 (3)
C5—C61.393 (6)O3—Ni1i1.998 (3)
C5—H50.9300O4—H4A0.85 (5)
C6—C71.416 (6)O4—H4B0.85 (5)
C6—C81.450 (6)O5—H5C0.85 (2)
C7—O21.304 (5)O5—H5A0.86 (6)
O1—C1—C2128.7 (4)O3i—Ni1—O2169.53 (13)
O1—C1—H1115.6O2i—Ni1—O280.18 (13)
C2—C1—H1115.6O3i—Ni1—O1100.54 (14)
C3—C2—C1114.8 (4)O2i—Ni1—O1169.22 (12)
C3—C2—C7119.9 (4)O2—Ni1—O189.91 (13)
C1—C2—C7125.0 (4)O3i—Ni1—O489.11 (15)
C4—C3—C2119.9 (4)O2i—Ni1—O491.02 (14)
C4—C3—H3120.1O2—Ni1—O492.46 (14)
C2—C3—H3120.1O1—Ni1—O485.14 (14)
F1—C4—C3118.9 (5)O3i—Ni1—O585.59 (15)
F1—C4—C5118.9 (5)O2i—Ni1—O594.66 (15)
C3—C4—C5122.2 (4)O2—Ni1—O593.79 (13)
C4—C5—C6119.2 (5)O1—Ni1—O590.19 (15)
C4—C5—H5120.4O4—Ni1—O5172.19 (15)
C6—C5—H5120.4C1—O1—Ni1123.0 (3)
C5—C6—C7121.3 (4)C7—O2—Ni1i128.1 (3)
C5—C6—C8114.5 (4)C7—O2—Ni1128.3 (3)
C7—C6—C8124.1 (4)Ni1i—O2—Ni199.82 (13)
O2—C7—C2121.1 (4)C8—O3—Ni1i126.6 (3)
O2—C7—C6121.5 (4)Ni1—O4—H4A110 (4)
C2—C7—C6117.4 (4)Ni1—O4—H4B109 (4)
O3—C8—C6127.3 (4)H4A—O4—H4B114 (6)
O3—C8—H8116.4Ni1—O5—H5C116 (4)
C6—C8—H8116.4Ni1—O5—H5A108 (4)
O3i—Ni1—O2i89.45 (13)H5C—O5—H5A111 (6)
O1—C1—C2—C3174.3 (5)O3i—Ni1—O1—C1161.0 (4)
O1—C1—C2—C7−11.6 (8)O2i—Ni1—O1—C13.4 (9)
C1—C2—C3—C4178.2 (5)O2—Ni1—O1—C1−19.6 (4)
C7—C2—C3—C43.7 (7)O4—Ni1—O1—C172.9 (4)
C2—C3—C4—F1178.3 (4)O5—Ni1—O1—C1−113.4 (4)
C2—C3—C4—C5−2.4 (8)C2—C7—O2—Ni1i−166.2 (3)
F1—C4—C5—C6180.0 (5)C6—C7—O2—Ni1i16.8 (6)
C3—C4—C5—C60.7 (8)C2—C7—O2—Ni1−12.6 (5)
C4—C5—C6—C7−0.3 (8)C6—C7—O2—Ni1170.5 (3)
C4—C5—C6—C8179.7 (5)O3i—Ni1—O2—C7−167.1 (7)
C3—C2—C7—O2179.7 (4)O2i—Ni1—O2—C7−159.3 (4)
C1—C2—C7—O25.8 (7)O1—Ni1—O2—C716.5 (3)
C3—C2—C7—C6−3.3 (6)O4—Ni1—O2—C7−68.7 (3)
C1—C2—C7—C6−177.1 (4)O5—Ni1—O2—C7106.7 (3)
C5—C6—C7—O2178.6 (4)O3i—Ni1—O2—Ni1i−7.8 (8)
C8—C6—C7—O2−1.4 (7)O2i—Ni1—O2—Ni1i0.0
C5—C6—C7—C21.6 (6)O1—Ni1—O2—Ni1i175.74 (14)
C8—C6—C7—C2−178.4 (4)O4—Ni1—O2—Ni1i90.61 (15)
C5—C6—C8—O3173.9 (5)O5—Ni1—O2—Ni1i−94.08 (16)
C7—C6—C8—O3−6.1 (8)C6—C8—O3—Ni1i−2.9 (7)
C2—C1—O1—Ni121.3 (7)

Symmetry codes: (i) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4A···Cl10.85 (5)2.44 (3)3.198 (4)149 (6)
O4—H4B···Cl1ii0.85 (5)2.45 (3)3.241 (4)154 (5)
O5—H5C···Cl1iii0.85 (2)2.61 (4)3.313 (4)141 (5)
O5—H5A···Cl1i0.86 (6)2.39 (4)3.101 (4)142 (5)

Symmetry codes: (ii) −x, −y+1, −z+1; (iii) −x+1, y−1/2, −z+3/2; (i) −x+1, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2267).

References

  • Adhikary, B., Biswas, A. K., Nag, K., Zanello, P. & Cinquantini, A. (1987). Polyhedron, 6, 897–905.
  • Bruker (2007). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Mohanta, S., Baitalik, S., Dutta, S. K. & Adhikary, B. (1998). Polyhedron, 17, 2669–2677.
  • Raimondi, A. C., De Souza, V. R., Toma, H. E., Mangrich, A. S., Hasegawa, T. & Nunes, F. S. (2004). Polyhedron, 23, 2069–2074.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Taniguchi, S. (1984). Bull. Chem. Soc. Jpn, 57, 2683–2684.
  • Thompson, I. K., Mandal, S. K., Tandon, S. S., Bridson, J. N. & Park, M. K. (1996). Inorg. Chem.35, 3117–3125. [PubMed]
  • Wang, Z., Reibenspies, J. & Martell, A. E. (1997). Inorg. Chem.36, 629–636.
  • Zhou, H., Peng, Z. H., Pan, Z. Q., Liu, B. & Liu, Y. Q. (2005). J. Coord. Chem.58, 443–451.
  • Zhou, H., Peng, Z. H., Pan, Z. Q., Song, Y., Huang, Q. M. & Hu, X. L. (2007). Polyhedron, 26, 3233–3241.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography