PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m715–m716.
Published online 2010 May 29. doi:  10.1107/S1600536810019343
PMCID: PMC2979617

Bis{deca­carbonyl­bis­[μ-2,2′-(phenyl­imino)­diethano­lato]ditin(II)ditungsten(0)(2 Sn—W)} hexa­carbonyl­tungsten(0)

Abstract

In the title 2:1 adduct, [Sn2W2(C10H13NO2)2(CO)10]2[W(CO)6], the complete hexa­carbonyl­tungsten mol­ecule is generated by a crystallographic inversion centre. The heterometallic mol­ecule features a central Sn2O2 core with essentially equal Sn—Oeth­oxy bond lengths. The second eth­oxy O and amine N atoms of each N,O,O′-tridentate ligand coordinate to one Sn atom only. The NO3 donor atoms occupy basal positions and the W atom the apical position in a distorted square-pyramidal geometry for each Sn atom. The W atoms are approximately syn to each other but the central metal core is non-planar [W—Sn(...)Sn—W pseudo-torsion angle = 43.573 (16)°]. One of the carbonyl ligands in the heterometallic mol­ecule is disordered over two orientations with equal occupancies. In the crystal, the heterometallic mol­ecules associate via C—H(...)O inter­actions, forming supra­molecular layers with undulating topology in the ab plane. These stack along the c axis, defining voids which are occupied by the W(CO)6 mol­ecules.

Related literature

For synthetic background, see: Zeldin & Gsell (1976 [triangle]); Zschunke et al. (1983 [triangle], 1986 [triangle]). For related structures, see: Berends et al. (2009 [triangle]). For additional geometric analysis, see: Addison et al. (1984 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m715-scheme1.jpg

Experimental

Crystal data

  • [Sn2W2(C10H13NO2)2(CO)10]2[W(CO)6]
  • M r = 2839.15
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m715-efi1.jpg
  • a = 11.3547 (5) Å
  • b = 12.5454 (5) Å
  • c = 16.8187 (7) Å
  • α = 108.715 (4)°
  • β = 92.758 (4)°
  • γ = 115.350 (4)°
  • V = 2001.90 (19) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 8.46 mm−1
  • T = 173 K
  • 0.20 × 0.08 × 0.06 mm

Data collection

  • Oxford Diffraction Xcalibur2 CCD diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008 [triangle]) T min = 0.608, T max = 1.000
  • 39646 measured reflections
  • 9035 independent reflections
  • 7218 reflections with I > 2σ(I)
  • R int = 0.038

Refinement

  • R[F 2 > 2σ(F 2)] = 0.020
  • wR(F 2) = 0.039
  • S = 0.95
  • 9035 reflections
  • 518 parameters
  • 12 restraints
  • H-atom parameters constrained
  • Δρmax = 0.87 e Å−3
  • Δρmin = −1.74 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2008 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2008 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019343/hb5458sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019343/hb5458Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The title compound, (I), investigated as a continuation of a long-standing interest in heterometallic compounds containing Sn and W (Zeldin et al., 1976; Zschunke et al., 1983; Zschunke et al., 1986; Berends et al., 2009), is a co-crystal comprising a [(CO)5WSn(OC2H4)2NPh]2 molecule, Fig. 1, and a W(CO)6 molecule, Fig. 2, with the latter disposed about a crystallographic centre of inversion.

The structure of [(CO)5WSn(OC2H4)2NPh]2 resembles that of the related N-methyl- and N-(t-butyl)- substituted derivatives (Berends et al., 2009). Dimerization is achieved by almost symmetric µ2-ethoxy bridges between the Sn atoms, Table 1. Each tridentate ligand also coordinates to a tin atom via bonds formed by a second ethoxy-O and the amine-N. The coordination geometries are based on square pyramidal configurations with the O11, O17, O21, and N14 atoms at Sn1, and the O11, O21, O27, and N24 atoms at Sn2 occupying the basal positions, and W1 (at Sn1) and W2 (at Sn2) occupying the apical positions, Table 1. The values of τ = 0.02 and 0.08 for Sn1 and Sn2, respectively, which compare to τ = 0.0 for an ideal square pyramid and τ = 1.0 for an ideal trigonal pyramidal arrangement (Addison et al., 1984), confirm the assignment of coordination polyhedra. The W atoms are approximately syn to each other but the W1–Sn1···Sn2–W2 atoms deviate from co-planarity as seen in the torsion angle of 43.573 (16) °. The Sn1–N14 and Sn2–N24 bond distances of 2.507 (3) and 2.391 (3) Å, respectively, fall in between those found for the N-methyl (2.356 (5)/2.360 (6) Å) and N-(t-butyl) (2.549 (4)/2.444 (5) Å)) -substituted analogues (Berends et al., 2009) and indicate the increasing donor capacity of the N atoms in the sequence N(t-Bu) < NPh < NMe.

The most prominent intermolecular interactions operating in the crystal structure are of the type C–H···O, Table 2, and these occur between atoms comprising [(CO)5WSn(OC2H4)2NPh]2 to form an undulating 2-D array in the ab plane, Fig. 3. Centrosymmetric layers associate to form a double layer and these stack along the c axis. Gaps evident in Fig. 2, from translational symmetry, face each other in the global crystal packing to form voids of approximate volume 300 Å3, allowing for the incorporation of the W(CO)6 molecules, as highlighted in Fig. 4.

Experimental

Freshly prepared tin(II) butoxide was reacted with one molar equivalent of N-phenyldiethanolamine in toluene. The toluene/butanol azeotropic mixture was distilled off and the stannylene Sn(OCH2CH2)2NPh was isolated as a very poorly soluble white solid that was not characterized further and used in the next step without further purification. The stannylene (2.9 g, 4.8 mmol) was suspended in THF (50 ml) and an excess of W(CO)5.THF in THF was added dropwise. The reaction mixture was stirred for 24 h at room temperature during which it turned to a clear solution. The THF was removed in vacuo and the residue was recrystallized from toluene to give colourless prisms of (I) (5.2 g, 75%, m.p. 460 K). 119Sn-NMR (CD2Cl2, 300 MHz) δ -210 p.p.m. (s, 1J(119Sn-183W) = 1515 Hz). Elemental analysis: calculated (%) for C66H52N4O34Sn4W5: C 27.9, H 1.9, N 2.0. Found: C 27.0, H 2.0, N 1.9.

Refinement

The H atoms were geometrically placed (C—H = 0.95–0.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C). The maximum and minimum residual electron density peaks of 0.87 and -1.74 e Å-3, respectively, were located 0.00 and 0.57 Å from the W3 atom. One the W2-bound carbonyl groups (C35[equivalent]O35) was disordered over two positions of equal weight (from anisotropic refinement). The anisotropic displacement parameters of the disordered atoms were constrained to be equal and approximately isotropic by the EADP and ISOR commands in SHELX-97, respectively (Sheldrick, 2008).

Figures

Fig. 1.
The molecular structure of [(CO)5WSn(OC2H4)2NPh]2 in (I) showing displacement ellipsoids at the 50% probability level. One one orientation of the disordered carbonyl group (bound to W2) is shown.
Fig. 2.
The molecular structure of the W(CO)6 molecule in (I) showing displacement ellipsoids at the 50% probability level. Unlabelled atoms are related by the symmetry operation -x, -y, -z.
Fig. 3.
Two-dimensional array, in the ab plane, in (I) mediated by C–H···O interactions (blue dashed lines) between molecules of [(CO)5WSn(OC2H4)2NPh]2. Colour code: W, olive; Sn, orange; O, red; N, blue; C, grey; and H, green. ...
Fig. 4.
A view of the stacking of layers in (I) along the c axis allowing for the incorporation of W(CO)6 molecules (shown in space filling mode) in the voids thus formed. The C–H···O interactions are shown as blue dashed lines. ...

Crystal data

[Sn2W2(C10H13NO2)2(CO)10]2[W(CO)6]Z = 1
Mr = 2839.15F(000) = 1318
Triclinic, P1Dx = 2.355 Mg m3
Hall symbol: -P 1Melting point: 460 K
a = 11.3547 (5) ÅMo Kα radiation, λ = 0.71073 Å
b = 12.5454 (5) ÅCell parameters from 35730 reflections
c = 16.8187 (7) Åθ = 2.0–25.5°
α = 108.715 (4)°µ = 8.46 mm1
β = 92.758 (4)°T = 173 K
γ = 115.350 (4)°Prism, colourless
V = 2001.90 (19) Å30.20 × 0.08 × 0.06 mm

Data collection

Oxford Diffraction Xcalibur2 CCD diffractometer9035 independent reflections
Radiation source: Enhance (Mo) X-ray Source7218 reflections with I > 2σ(I)
graphiteRint = 0.038
Detector resolution: 16.0560 pixels mm-1θmax = 27.5°, θmin = 2.0°
973 frames via ω–rotation (Δω = 1°) and two times 30 s per frame (16 sets at different κ–angles) scansh = −14→14
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2008)k = −16→15
Tmin = 0.608, Tmax = 1.000l = −21→21
39646 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.020Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.039H-atom parameters constrained
S = 0.95w = 1/[σ2(Fo2) + (0.018P)2] where P = (Fo2 + 2Fc2)/3
9035 reflections(Δ/σ)max = 0.001
518 parametersΔρmax = 0.87 e Å3
12 restraintsΔρmin = −1.74 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
W1−0.282538 (14)0.425012 (14)0.091913 (8)0.01414 (4)
W20.204122 (15)0.964916 (14)0.386429 (9)0.02111 (4)
W30.00000.00000.00000.02888 (6)
Sn1−0.12400 (2)0.43967 (2)0.226266 (13)0.01384 (5)
Sn20.17113 (2)0.72211 (2)0.335720 (13)0.01364 (5)
O11−0.0388 (2)0.6118 (2)0.33287 (13)0.0172 (5)
O17−0.0577 (3)0.3220 (2)0.24211 (15)0.0270 (6)
O210.0794 (2)0.5636 (2)0.21882 (13)0.0159 (5)
O270.2066 (2)0.6510 (2)0.42020 (14)0.0225 (6)
O310.1889 (3)0.9430 (3)0.19202 (17)0.0344 (7)
O320.5203 (3)1.0749 (3)0.4149 (2)0.0577 (10)
O33−0.1126 (3)0.8466 (3)0.3463 (2)0.0481 (8)
O340.1939 (3)0.9427 (3)0.56971 (17)0.0458 (9)
O41−0.4503 (3)0.4212 (3)−0.06435 (16)0.0363 (7)
O42−0.4920 (3)0.1343 (3)0.04587 (17)0.0441 (8)
O43−0.0948 (3)0.3502 (3)−0.02380 (16)0.0328 (7)
O44−0.4392 (3)0.5231 (3)0.22452 (17)0.0350 (7)
O45−0.0934 (3)0.7209 (3)0.13766 (19)0.0456 (8)
O1W−0.2172 (3)0.0976 (3)0.0011 (2)0.0499 (8)
O2W0.2380 (4)0.2807 (3)0.0516 (2)0.0713 (12)
O3W−0.0041 (3)0.0494 (4)0.1977 (2)0.0575 (10)
N14−0.2180 (3)0.3899 (3)0.34934 (17)0.0173 (6)
N240.3492 (3)0.6808 (3)0.29092 (16)0.0150 (6)
C12−0.0998 (4)0.6237 (3)0.4054 (2)0.0210 (8)
H12A−0.18260.62850.39150.025*
H12B−0.03820.70230.45490.025*
C13−0.1313 (3)0.5090 (4)0.4276 (2)0.0208 (8)
H13A−0.17870.51200.47550.025*
H13B−0.04760.50840.44620.025*
C15−0.1904 (4)0.2831 (4)0.3487 (2)0.0275 (9)
H15A−0.26460.20090.30890.033*
H15B−0.18420.28090.40700.033*
C16−0.0601 (4)0.3013 (4)0.3201 (2)0.0304 (9)
H16A0.01560.37520.36550.037*
H16B−0.04900.22480.31240.037*
C220.1591 (3)0.5150 (3)0.1702 (2)0.0187 (8)
H22A0.18560.55450.12730.022*
H22B0.10580.42170.13910.022*
C230.2809 (3)0.5439 (3)0.2290 (2)0.0195 (8)
H23A0.34360.52690.19450.023*
H23B0.25550.48730.26170.023*
C250.4201 (4)0.6963 (4)0.3742 (2)0.0229 (8)
H25A0.47380.78810.41020.027*
H25B0.48140.65870.36320.027*
C260.3187 (4)0.6303 (4)0.4220 (2)0.0242 (9)
H26A0.28830.53750.39610.029*
H26B0.36390.66120.48270.029*
C310.1962 (4)0.9539 (4)0.2626 (2)0.0242 (8)
C320.4076 (4)1.0356 (4)0.4052 (2)0.0343 (10)
C330.0011 (4)0.8895 (4)0.3611 (2)0.0291 (9)
C340.2003 (4)0.9537 (4)0.5052 (2)0.0305 (10)
C350.2013 (8)1.1351 (9)0.4227 (5)0.0224 (13)0.50
O350.2001 (6)1.2300 (6)0.4454 (4)0.0326 (11)0.50
C35'0.2389 (9)1.1409 (9)0.4413 (5)0.0224 (13)0.50
O35'0.2527 (6)1.2454 (6)0.4726 (4)0.0326 (11)0.50
C41−0.3904 (4)0.4216 (3)−0.0074 (2)0.0206 (8)
C42−0.4151 (4)0.2378 (4)0.0629 (2)0.0246 (9)
C43−0.1640 (4)0.3754 (3)0.0168 (2)0.0197 (8)
C44−0.3857 (4)0.4845 (4)0.1755 (2)0.0212 (8)
C45−0.1578 (4)0.6146 (4)0.1211 (2)0.0249 (9)
C500.4344 (3)0.7664 (3)0.25168 (19)0.0164 (7)
C510.5718 (3)0.8100 (4)0.2657 (2)0.0225 (8)
H51A0.61290.78490.30160.027*
C520.6483 (4)0.8903 (4)0.2268 (2)0.0304 (10)
H52A0.74220.92090.23700.037*
C530.5899 (4)0.9265 (4)0.1735 (2)0.0305 (10)
H53A0.64320.98090.14670.037*
C540.4533 (4)0.8831 (4)0.1593 (2)0.0255 (9)
H54A0.41240.90800.12310.031*
C550.3757 (4)0.8024 (3)0.1985 (2)0.0186 (8)
H55A0.28190.77200.18840.022*
C60−0.3583 (4)0.3562 (3)0.3345 (2)0.0204 (8)
C61−0.4104 (4)0.4260 (4)0.3887 (2)0.0210 (8)
H61A−0.35400.49710.43940.025*
C62−0.5461 (4)0.3915 (4)0.3686 (3)0.0318 (10)
H62A−0.58160.43820.40670.038*
C63−0.6283 (4)0.2915 (4)0.2949 (3)0.0378 (11)
H63A−0.72010.26930.28140.045*
C64−0.5764 (4)0.2235 (4)0.2402 (3)0.0361 (11)
H64A−0.63260.15480.18850.043*
C65−0.4425 (4)0.2545 (4)0.2601 (2)0.0253 (9)
H65A−0.40850.20560.22250.030*
C1W−0.1393 (4)0.0640 (4)−0.0008 (3)0.0347 (10)
C3W−0.0019 (4)0.0314 (5)0.1270 (3)0.0398 (11)
C2W0.1544 (5)0.1819 (5)0.0329 (3)0.0454 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
W10.01393 (7)0.01671 (8)0.01116 (7)0.00708 (6)0.00274 (5)0.00467 (6)
W20.02669 (9)0.01450 (8)0.02054 (8)0.00916 (7)0.01048 (6)0.00461 (6)
W30.03388 (14)0.02716 (13)0.03009 (12)0.01872 (11)0.00676 (10)0.01009 (10)
Sn10.01483 (12)0.01582 (12)0.01151 (11)0.00799 (10)0.00312 (9)0.00475 (9)
Sn20.01529 (12)0.01461 (12)0.01094 (11)0.00749 (10)0.00403 (9)0.00392 (9)
O110.0165 (13)0.0191 (13)0.0132 (11)0.0072 (11)0.0085 (9)0.0037 (10)
O170.0395 (17)0.0323 (16)0.0247 (13)0.0257 (14)0.0150 (12)0.0159 (12)
O210.0124 (12)0.0189 (13)0.0130 (11)0.0078 (11)0.0049 (9)0.0009 (10)
O270.0251 (14)0.0355 (16)0.0200 (13)0.0190 (13)0.0118 (11)0.0185 (12)
O310.0388 (18)0.0384 (18)0.0331 (16)0.0190 (15)0.0119 (13)0.0203 (14)
O320.0267 (19)0.050 (2)0.055 (2)0.0002 (17)0.0024 (15)−0.0043 (17)
O330.037 (2)0.055 (2)0.071 (2)0.0307 (18)0.0195 (16)0.0333 (18)
O340.066 (2)0.045 (2)0.0193 (15)0.0225 (18)0.0110 (14)0.0081 (14)
O410.0443 (18)0.054 (2)0.0186 (14)0.0351 (17)0.0006 (12)0.0076 (13)
O420.0468 (19)0.0227 (17)0.0334 (16)−0.0042 (15)0.0089 (14)0.0038 (13)
O430.0352 (17)0.0425 (18)0.0271 (14)0.0231 (15)0.0172 (13)0.0123 (13)
O440.0442 (18)0.0503 (19)0.0340 (16)0.0359 (16)0.0223 (14)0.0229 (14)
O450.044 (2)0.0199 (17)0.058 (2)0.0040 (15)0.0155 (16)0.0120 (15)
O1W0.048 (2)0.059 (2)0.066 (2)0.0393 (19)0.0203 (17)0.0303 (18)
O2W0.064 (3)0.033 (2)0.090 (3)0.007 (2)0.015 (2)0.012 (2)
O3W0.079 (3)0.087 (3)0.0382 (19)0.063 (2)0.0235 (18)0.0261 (19)
N140.0214 (16)0.0181 (16)0.0163 (14)0.0112 (14)0.0057 (12)0.0085 (12)
N240.0151 (15)0.0188 (16)0.0112 (13)0.0085 (13)0.0019 (11)0.0050 (12)
C120.0188 (19)0.023 (2)0.0134 (17)0.0068 (17)0.0074 (14)0.0014 (15)
C130.0186 (19)0.035 (2)0.0126 (17)0.0128 (18)0.0056 (14)0.0134 (16)
C150.043 (3)0.027 (2)0.027 (2)0.023 (2)0.0124 (18)0.0172 (17)
C160.043 (3)0.037 (2)0.029 (2)0.030 (2)0.0087 (18)0.0186 (19)
C220.0184 (19)0.0187 (19)0.0151 (17)0.0086 (16)0.0062 (14)0.0016 (15)
C230.0187 (19)0.0175 (19)0.0213 (18)0.0088 (16)0.0055 (15)0.0053 (15)
C250.023 (2)0.032 (2)0.0154 (17)0.0136 (18)−0.0002 (15)0.0104 (16)
C260.029 (2)0.030 (2)0.0206 (19)0.0160 (19)0.0043 (16)0.0146 (17)
C310.026 (2)0.020 (2)0.033 (2)0.0135 (18)0.0109 (17)0.0136 (17)
C320.036 (3)0.025 (2)0.024 (2)0.005 (2)0.0062 (18)−0.0006 (18)
C330.035 (3)0.030 (2)0.038 (2)0.025 (2)0.0163 (19)0.0186 (19)
C340.030 (2)0.019 (2)0.027 (2)0.0052 (18)0.0046 (17)−0.0022 (17)
C350.0225 (16)0.0222 (15)0.0222 (15)0.0103 (10)0.0059 (11)0.0082 (9)
O350.0336 (14)0.0310 (12)0.0332 (13)0.0160 (9)0.0099 (10)0.0107 (9)
C35'0.0225 (16)0.0222 (15)0.0222 (15)0.0103 (10)0.0059 (11)0.0082 (9)
O35'0.0336 (14)0.0310 (12)0.0332 (13)0.0160 (9)0.0099 (10)0.0107 (9)
C410.023 (2)0.024 (2)0.0140 (17)0.0125 (17)0.0034 (15)0.0035 (15)
C420.028 (2)0.025 (2)0.0149 (18)0.0094 (19)0.0060 (16)0.0043 (16)
C430.024 (2)0.0195 (19)0.0161 (17)0.0101 (17)0.0034 (15)0.0079 (15)
C440.022 (2)0.024 (2)0.0182 (18)0.0097 (18)0.0008 (15)0.0120 (16)
C450.023 (2)0.027 (2)0.024 (2)0.0123 (19)0.0089 (16)0.0076 (17)
C500.022 (2)0.0152 (18)0.0094 (16)0.0088 (16)0.0034 (14)0.0020 (14)
C510.017 (2)0.027 (2)0.0186 (18)0.0073 (18)0.0017 (15)0.0061 (16)
C520.020 (2)0.034 (2)0.025 (2)0.0045 (19)0.0072 (16)0.0069 (18)
C530.036 (2)0.024 (2)0.023 (2)0.0069 (19)0.0123 (18)0.0087 (17)
C540.033 (2)0.024 (2)0.0194 (19)0.0145 (19)0.0069 (16)0.0070 (16)
C550.0203 (19)0.0184 (19)0.0160 (17)0.0104 (16)0.0049 (14)0.0034 (15)
C600.024 (2)0.021 (2)0.0197 (18)0.0079 (17)0.0088 (15)0.0161 (16)
C610.023 (2)0.025 (2)0.0204 (18)0.0108 (17)0.0091 (15)0.0146 (16)
C620.031 (2)0.045 (3)0.039 (2)0.023 (2)0.0206 (19)0.029 (2)
C630.017 (2)0.053 (3)0.046 (3)0.008 (2)0.0102 (19)0.033 (2)
C640.025 (2)0.035 (3)0.034 (2)−0.003 (2)0.0021 (18)0.019 (2)
C650.030 (2)0.018 (2)0.024 (2)0.0051 (18)0.0097 (17)0.0119 (16)
C1W0.039 (3)0.036 (3)0.034 (2)0.021 (2)0.0078 (19)0.015 (2)
C3W0.040 (3)0.051 (3)0.039 (3)0.032 (2)0.011 (2)0.014 (2)
C2W0.049 (3)0.037 (3)0.050 (3)0.023 (3)0.015 (2)0.014 (2)

Geometric parameters (Å, °)

W1—C412.000 (4)N24—C251.493 (4)
W1—C442.035 (4)N24—C231.506 (4)
W1—C432.042 (4)C12—C131.500 (5)
W1—C422.046 (4)C12—H12A0.9900
W1—C452.050 (4)C12—H12B0.9900
W2—C35'1.947 (10)C13—H13A0.9900
W2—C312.037 (4)C13—H13B0.9900
W2—C352.038 (10)C15—C161.524 (5)
W2—C332.042 (4)C15—H15A0.9900
W2—C342.049 (4)C15—H15B0.9900
W2—C322.054 (5)C16—H16A0.9900
W3—C3Wi2.047 (4)C16—H16B0.9900
W3—C3W2.047 (4)C22—C231.494 (5)
W3—C1Wi2.059 (5)C22—H22A0.9900
W3—C1W2.059 (5)C22—H22B0.9900
W3—C2W2.064 (5)C23—H23A0.9900
W3—C2Wi2.064 (5)C23—H23B0.9900
Sn1—W12.7274 (3)C25—C261.535 (5)
Sn1—O112.091 (2)C25—H25A0.9900
Sn1—O172.001 (3)C25—H25B0.9900
Sn1—O212.201 (2)C26—H26A0.9900
Sn1—N142.507 (3)C26—H26B0.9900
Sn2—W22.7334 (3)C35—O351.134 (11)
Sn2—O112.173 (2)C35'—O35'1.181 (11)
Sn2—O212.104 (2)C50—C551.381 (5)
Sn2—O272.011 (2)C50—C511.393 (5)
Sn2—N242.391 (3)C51—C521.387 (5)
O11—C121.430 (3)C51—H51A0.9500
O17—C161.416 (4)C52—C531.383 (6)
O21—C221.443 (4)C52—H52A0.9500
O27—C261.405 (4)C53—C541.384 (5)
O31—C311.146 (4)C53—H53A0.9500
O32—C321.138 (5)C54—C551.399 (5)
O33—C331.142 (5)C54—H54A0.9500
O34—C341.138 (4)C55—H55A0.9500
O41—C411.146 (4)C60—C651.387 (5)
O42—C421.139 (4)C60—C611.389 (5)
O43—C431.145 (4)C61—C621.401 (5)
O44—C441.152 (4)C61—H61A0.9500
O45—C451.139 (4)C62—C631.367 (6)
O1W—C1W1.129 (5)C62—H62A0.9500
O2W—C2W1.117 (5)C63—C641.378 (6)
O3W—C3W1.140 (5)C63—H63A0.9500
N14—C601.448 (4)C64—C651.391 (6)
N14—C151.498 (5)C64—H64A0.9500
N14—C131.513 (4)C65—H65A0.9500
N24—C501.467 (4)
C41—W1—C4492.39 (14)C13—C12—H12B110.1
C41—W1—C4391.82 (14)H12A—C12—H12B108.4
C44—W1—C43174.81 (14)C12—C13—N14109.1 (3)
C41—W1—C4288.78 (15)C12—C13—H13A109.9
C44—W1—C4291.70 (14)N14—C13—H13A109.9
C43—W1—C4291.42 (14)C12—C13—H13B109.9
C41—W1—C4589.43 (15)N14—C13—H13B109.9
C44—W1—C4586.05 (14)H13A—C13—H13B108.3
C43—W1—C4590.96 (14)N14—C15—C16110.1 (3)
C42—W1—C45177.07 (16)N14—C15—H15A109.6
C41—W1—Sn1176.98 (10)C16—C15—H15A109.6
C44—W1—Sn188.91 (10)N14—C15—H15B109.6
C43—W1—Sn186.74 (10)C16—C15—H15B109.6
C42—W1—Sn193.90 (11)H15A—C15—H15B108.2
C45—W1—Sn187.94 (11)O17—C16—C15111.6 (3)
C35'—W2—C3198.6 (3)O17—C16—H16A109.3
C35'—W2—C3513.6 (3)C15—C16—H16A109.3
C31—W2—C3590.4 (3)O17—C16—H16B109.3
C35'—W2—C3395.2 (3)C15—C16—H16B109.3
C31—W2—C3387.69 (15)H16A—C16—H16B108.0
C35—W2—C3384.0 (3)O21—C22—C23110.2 (3)
C35'—W2—C3487.6 (3)O21—C22—H22A109.6
C31—W2—C34173.43 (15)C23—C22—H22A109.6
C35—W2—C3495.2 (3)O21—C22—H22B109.6
C33—W2—C3489.53 (15)C23—C22—H22B109.6
C35'—W2—C3286.6 (3)H22A—C22—H22B108.1
C31—W2—C3289.70 (15)C22—C23—N24111.3 (3)
C35—W2—C3297.5 (3)C22—C23—H23A109.4
C33—W2—C32177.00 (15)N24—C23—H23A109.4
C34—W2—C3292.91 (16)C22—C23—H23B109.4
C35'—W2—Sn2170.6 (2)N24—C23—H23B109.4
C31—W2—Sn290.23 (11)H23A—C23—H23B108.0
C35—W2—Sn2172.2 (2)N24—C25—C26110.1 (3)
C33—W2—Sn288.23 (11)N24—C25—H25A109.6
C34—W2—Sn283.74 (11)C26—C25—H25A109.6
C32—W2—Sn290.29 (12)N24—C25—H25B109.6
C3Wi—W3—C3W180.0 (3)C26—C25—H25B109.6
C3Wi—W3—C1Wi87.14 (16)H25A—C25—H25B108.2
C3W—W3—C1Wi92.86 (16)O27—C26—C25113.9 (3)
C3Wi—W3—C1W92.86 (16)O27—C26—H26A108.8
C3W—W3—C1W87.14 (16)C25—C26—H26A108.8
C1Wi—W3—C1W180.0 (3)O27—C26—H26B108.8
C3Wi—W3—C2W89.36 (18)C25—C26—H26B108.8
C3W—W3—C2W90.64 (18)H26A—C26—H26B107.7
C1Wi—W3—C2W88.71 (19)O31—C31—W2177.5 (3)
C1W—W3—C2W91.29 (19)O32—C32—W2179.3 (4)
C3Wi—W3—C2Wi90.64 (18)O33—C33—W2179.4 (4)
C3W—W3—C2Wi89.36 (18)O34—C34—W2177.3 (3)
C1Wi—W3—C2Wi91.29 (19)O35—C35—W2177.9 (8)
C1W—W3—C2Wi88.71 (19)O35'—C35'—W2176.3 (8)
C2W—W3—C2Wi180.0 (3)O41—C41—W1178.9 (3)
O17—Sn1—O11110.71 (10)O42—C42—W1177.8 (4)
O17—Sn1—O2188.04 (10)O43—C43—W1178.3 (3)
O11—Sn1—O2169.82 (8)O44—C44—W1177.1 (3)
O17—Sn1—N1476.52 (9)O45—C45—W1176.8 (4)
O11—Sn1—N1473.42 (9)C55—C50—C51119.6 (3)
O21—Sn1—N14131.57 (8)C55—C50—N24118.8 (3)
O17—Sn1—W1132.90 (7)C51—C50—N24121.6 (3)
O11—Sn1—W1116.19 (7)C52—C51—C50119.6 (4)
O21—Sn1—W1103.68 (6)C52—C51—H51A120.2
N14—Sn1—W1120.53 (7)C50—C51—H51A120.2
O27—Sn2—O21104.24 (10)C53—C52—C51120.9 (4)
O27—Sn2—O1185.86 (9)C53—C52—H52A119.5
O21—Sn2—O1170.16 (8)C51—C52—H52A119.5
O27—Sn2—N2478.41 (9)C52—C53—C54119.6 (4)
O21—Sn2—N2475.71 (9)C52—C53—H53A120.2
O11—Sn2—N24137.35 (9)C54—C53—H53A120.2
O27—Sn2—W2122.15 (7)C53—C54—C55119.7 (4)
O21—Sn2—W2132.75 (7)C53—C54—H54A120.2
O11—Sn2—W2102.58 (6)C55—C54—H54A120.2
N24—Sn2—W2119.42 (7)C50—C55—C54120.6 (3)
C12—O11—Sn1119.87 (19)C50—C55—H55A119.7
C12—O11—Sn2125.65 (19)C54—C55—H55A119.7
Sn1—O11—Sn2110.16 (9)C65—C60—C61118.7 (3)
C16—O17—Sn1119.0 (2)C65—C60—N14118.3 (3)
C22—O21—Sn2119.90 (18)C61—C60—N14122.8 (3)
C22—O21—Sn1122.88 (19)C60—C61—C62119.9 (4)
Sn2—O21—Sn1108.63 (9)C60—C61—H61A120.0
C26—O27—Sn2118.74 (19)C62—C61—H61A120.0
C60—N14—C15114.3 (3)C63—C62—C61121.0 (4)
C60—N14—C13114.8 (3)C63—C62—H62A119.5
C15—N14—C13110.5 (3)C61—C62—H62A119.5
C60—N14—Sn1109.40 (19)C62—C63—C64119.2 (4)
C15—N14—Sn1102.40 (19)C62—C63—H63A120.4
C13—N14—Sn1104.16 (18)C64—C63—H63A120.4
C50—N24—C25113.4 (3)C63—C64—C65120.7 (4)
C50—N24—C23111.8 (2)C63—C64—H64A119.7
C25—N24—C23111.7 (3)C65—C64—H64A119.7
C50—N24—Sn2114.0 (2)C60—C65—C64120.4 (4)
C25—N24—Sn2100.56 (19)C60—C65—H65A119.8
C23—N24—Sn2104.57 (19)C64—C65—H65A119.8
O11—C12—C13108.0 (3)O1W—C1W—W3177.5 (4)
O11—C12—H12A110.1O3W—C3W—W3179.1 (4)
C13—C12—H12A110.1O2W—C2W—W3179.2 (4)
O11—C12—H12B110.1
C41—W1—Sn1—O17−110.4 (19)W1—Sn1—O21—Sn2121.94 (8)
C44—W1—Sn1—O17134.13 (14)O21—Sn2—O27—C2680.3 (3)
C43—W1—Sn1—O17−48.71 (14)O11—Sn2—O27—C26148.6 (3)
C42—W1—Sn1—O1742.50 (14)N24—Sn2—O27—C268.4 (2)
C45—W1—Sn1—O17−139.78 (14)W2—Sn2—O27—C26−109.2 (2)
C41—W1—Sn1—O1163.9 (19)O17—Sn1—N14—C60−132.3 (2)
C44—W1—Sn1—O11−51.63 (12)O11—Sn1—N14—C60110.9 (2)
C43—W1—Sn1—O11125.54 (12)O21—Sn1—N14—C60152.7 (2)
C42—W1—Sn1—O11−143.25 (12)W1—Sn1—N14—C60−0.2 (2)
C45—W1—Sn1—O1134.46 (12)O17—Sn1—N14—C15−10.7 (2)
C41—W1—Sn1—O21−10.1 (19)O11—Sn1—N14—C15−127.5 (2)
C44—W1—Sn1—O21−125.61 (12)O21—Sn1—N14—C15−85.7 (2)
C43—W1—Sn1—O2151.55 (11)W1—Sn1—N14—C15121.5 (2)
C42—W1—Sn1—O21142.76 (12)O17—Sn1—N14—C13104.4 (2)
C45—W1—Sn1—O21−39.52 (12)O11—Sn1—N14—C13−12.4 (2)
C41—W1—Sn1—N14149.3 (19)O21—Sn1—N14—C1329.5 (3)
C44—W1—Sn1—N1433.84 (13)W1—Sn1—N14—C13−123.40 (19)
C43—W1—Sn1—N14−149.00 (13)O27—Sn2—N24—C50−150.5 (2)
C42—W1—Sn1—N14−57.79 (13)O21—Sn2—N24—C50101.4 (2)
C45—W1—Sn1—N14119.93 (12)O11—Sn2—N24—C50138.88 (19)
C35'—W2—Sn2—O275.0 (16)W2—Sn2—N24—C50−29.9 (2)
C31—W2—Sn2—O27165.61 (13)O27—Sn2—N24—C25−28.8 (2)
C35—W2—Sn2—O27−99.6 (18)O21—Sn2—N24—C25−137.0 (2)
C33—W2—Sn2—O27−106.71 (13)O11—Sn2—N24—C25−99.5 (2)
C34—W2—Sn2—O27−16.99 (14)W2—Sn2—N24—C2591.7 (2)
C32—W2—Sn2—O2775.91 (13)O27—Sn2—N24—C2387.1 (2)
C35'—W2—Sn2—O21172.6 (16)O21—Sn2—N24—C23−21.01 (19)
C31—W2—Sn2—O21−26.87 (13)O11—Sn2—N24—C2316.5 (2)
C35—W2—Sn2—O2167.9 (18)W2—Sn2—N24—C23−152.35 (17)
C33—W2—Sn2—O2160.82 (13)Sn1—O11—C12—C1347.2 (3)
C34—W2—Sn2—O21150.54 (14)Sn2—O11—C12—C13−107.1 (3)
C32—W2—Sn2—O21−116.57 (13)O11—C12—C13—N14−56.1 (3)
C35'—W2—Sn2—O1198.1 (16)C60—N14—C13—C12−80.8 (3)
C31—W2—Sn2—O11−101.36 (12)C15—N14—C13—C12148.2 (3)
C35—W2—Sn2—O11−6.6 (18)Sn1—N14—C13—C1238.9 (3)
C33—W2—Sn2—O11−13.68 (12)C60—N14—C15—C16151.8 (3)
C34—W2—Sn2—O1176.04 (13)C13—N14—C15—C16−76.8 (3)
C32—W2—Sn2—O11168.94 (12)Sn1—N14—C15—C1633.6 (3)
C35'—W2—Sn2—N24−89.7 (16)Sn1—O17—C16—C1543.3 (4)
C31—W2—Sn2—N2470.91 (13)N14—C15—C16—O17−51.5 (4)
C35—W2—Sn2—N24165.7 (18)Sn2—O21—C22—C2327.6 (4)
C33—W2—Sn2—N24158.59 (13)Sn1—O21—C22—C23−116.6 (3)
C34—W2—Sn2—N24−111.69 (13)O21—C22—C23—N24−47.2 (4)
C32—W2—Sn2—N24−18.79 (13)C50—N24—C23—C22−81.7 (3)
O17—Sn1—O11—C12−86.7 (2)C25—N24—C23—C22150.0 (3)
O21—Sn1—O11—C12−166.5 (3)Sn2—N24—C23—C2242.1 (3)
N14—Sn1—O11—C12−18.6 (2)C50—N24—C25—C26165.6 (3)
W1—Sn1—O11—C1297.8 (2)C23—N24—C25—C26−67.0 (4)
O17—Sn1—O11—Sn271.24 (12)Sn2—N24—C25—C2643.5 (3)
O21—Sn1—O11—Sn2−8.51 (10)Sn2—O27—C26—C2514.6 (4)
N14—Sn1—O11—Sn2139.37 (13)N24—C25—C26—O27−42.8 (4)
W1—Sn1—O11—Sn2−104.25 (9)C25—N24—C50—C55−152.8 (3)
O27—Sn2—O11—C1258.5 (3)C23—N24—C50—C5579.9 (4)
O21—Sn2—O11—C12165.3 (3)Sn2—N24—C50—C55−38.5 (3)
N24—Sn2—O11—C12126.4 (2)C25—N24—C50—C5128.4 (4)
W2—Sn2—O11—C12−63.5 (3)C23—N24—C50—C51−99.0 (4)
O27—Sn2—O11—Sn1−97.87 (12)Sn2—N24—C50—C51142.7 (3)
O21—Sn2—O11—Sn18.89 (10)C55—C50—C51—C520.8 (5)
N24—Sn2—O11—Sn1−29.95 (18)N24—C50—C51—C52179.6 (3)
W2—Sn2—O11—Sn1140.09 (9)C50—C51—C52—C53−0.8 (6)
O11—Sn1—O17—C1649.0 (3)C51—C52—C53—C540.6 (6)
O21—Sn1—O17—C16116.6 (3)C52—C53—C54—C55−0.5 (6)
N14—Sn1—O17—C16−17.1 (3)C51—C50—C55—C54−0.7 (5)
W1—Sn1—O17—C16−136.5 (2)N24—C50—C55—C54−179.5 (3)
O27—Sn2—O21—C22−76.9 (2)C53—C54—C55—C500.5 (5)
O11—Sn2—O21—C22−157.1 (3)C15—N14—C60—C65−56.2 (4)
N24—Sn2—O21—C22−3.1 (2)C13—N14—C60—C65174.6 (3)
W2—Sn2—O21—C22114.0 (2)Sn1—N14—C60—C6558.0 (3)
O27—Sn2—O21—Sn171.81 (12)C15—N14—C60—C61127.9 (3)
O11—Sn2—O21—Sn1−8.36 (10)C13—N14—C60—C61−1.3 (5)
N24—Sn2—O21—Sn1145.64 (12)Sn1—N14—C60—C61−117.9 (3)
W2—Sn2—O21—Sn1−97.32 (10)C65—C60—C61—C621.3 (5)
O17—Sn1—O21—C2243.4 (2)N14—C60—C61—C62177.2 (3)
O11—Sn1—O21—C22156.3 (3)C60—C61—C62—C63−1.7 (6)
N14—Sn1—O21—C22113.4 (2)C61—C62—C63—C640.6 (6)
W1—Sn1—O21—C22−90.5 (2)C62—C63—C64—C650.9 (6)
O17—Sn1—O21—Sn2−104.22 (11)C61—C60—C65—C640.2 (5)
O11—Sn1—O21—Sn28.71 (10)N14—C60—C65—C64−175.9 (3)
N14—Sn1—O21—Sn2−34.23 (17)C63—C64—C65—C60−1.3 (6)

Symmetry codes: (i) −x, −y, −z.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C23—H23a···O44ii0.992.523.301 (5)136
C64—H64a···O31iii0.952.583.174 (6)121

Symmetry codes: (ii) x+1, y, z; (iii) x−1, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5458).

References

  • Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Berends, T., Iovkova, L., Bradtmöller, G., Oppel, I., Schürmann, M. & Jurkschat, K. (2009). Z. Anorg. Allg. Chem.635, 369–374.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Oxford Diffraction (2008). CrysAlis CCD and CrysAlis RED Oxford Diffraction Ltd, Yarnton, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.
  • Zeldin, M. & Gsell, R. (1976). Synth. React. Inorg. Metallorg. Chem.6, 11.
  • Zschunke, A., Mügge, C., Scheer, M., Jurkschat, K. & Tzschach, A. (1983). J. Crystallogr. Spectrosc. Res.13, 201–210.
  • Zschunke, A., Scheer, M., Völzke, M., Jurkschat, K. & Tzschach, A. (1986). J. Organomet. Chem.308, 325–334.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography