PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1427.
Published online 2010 May 22. doi:  10.1107/S1600536810018428
PMCID: PMC2979612

(R,S)-3-Carb­oxy-2-(isoquinolinium-2-yl)propanoate monohydrate

Abstract

The title compound, C13H11NO4·H2O, is a monohydrate of a betaine exhibiting a positively charged N-substituted isoquino­line group and a deprotonated carboxyl group. In the crystal, mol­ecules are connected via short O—H(...)O hydrogen bonds between protonated and deprotonated carboxyl groups into chains of either R or S enanti­omers along [001]. These chains are additionally connected by hydrogen bonding between water mol­ecules and the deprotonated carb­oxy groups of neighbouring mol­ecules.

Related literature

For the structure of a co-crystal of a quinoline derivative betaine, see: Szafran et al. (2002 [triangle]) and for the structure of a 4-dithio­carboxyl­isoquinoline betaine, see: Matthews et al. (1973 [triangle]). For possible applications of isoquinoline derivatives, see: Katritsky & Pozharskii (2000 [triangle]). For the preparation of the title compound, see: Flett & Gardner (1952 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1427-scheme1.jpg

Experimental

Crystal data

  • C13H11NO4·H2O
  • M r = 263.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1427-efi1.jpg
  • a = 10.1030 (15) Å
  • b = 8.0706 (8) Å
  • c = 7.8911 (10) Å
  • β = 104.282 (14)°
  • V = 623.53 (14) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 295 K
  • 0.43 × 0.19 × 0.17 mm

Data collection

  • Oxford Diffraction Xcalibur CCD diffractometer
  • 7142 measured reflections
  • 1659 independent reflections
  • 994 reflections with I > 2σ(I)
  • R int = 0.054

Refinement

  • R[F 2 > 2σ(F 2)] = 0.076
  • wR(F 2) = 0.222
  • S = 1.02
  • 1659 reflections
  • 178 parameters
  • 6 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.23 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2006 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2006 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and Mercury (Macrae et al., 2006 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]), PLATON (Spek, 2009 [triangle]) and PARST (Nardelli, 1995 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018428/im2195sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018428/im2195Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors would like to thank the Ministry of Science, Education and Sport, Republic of Croatia, for financial support of this work through grant Nos. 119–1193079-3069, 119–1191342-2960 and 098–0982904-29121.

supplementary crystallographic information

Comment

Isoquinoline derivatives are of interest in synthesizing new fungicides, insecticides, textile assistants, corrosion inhibitors, dye stabilizers, and pharmaceuticals (Katritsky & Pozharskii, 2000) The molecular structure of I is given in Figure 1. The molecule of 3-carboxy-2-isoquinolinium-2-ylpropanoate is a betaine, i.e. a zwitterion containing a quaternary nitrogen atom and a deprotonated carboxyl group. It is the first betaine derived from isoquinoline to be structurally characterised, the only two similar compounds being a quinoline derivative (Szafran et al., 2002) and a 4-dithiocarboxylisoquinoline derivative (Matthews et al., 1973)

The compound crystallises in the space group Pc with two formula units per unit cell. Molecules of 3-carboxy-2-isoquinolinium-2-ylpropanoate are connected via strong hydrogen bonds between protonated and deprotonated carboxyl groups (O4—H4···O1 2.518 (7) Å, (x, y, -1+z)) along the c axis. Water molecules bridge two deprotonated carboxyl groups of neighbouring molecules along chains (O5—H2···O2 2.874 (7) Å, (x, 2- y, 1/2 + z) and O5—H1···O2 2.851 (7) Å). Chains consist of either R or S enantiomers and each chain is interconnected by water molecules to a neighbouring chain in which the molecules are of opposite chirality, thus forming double chains about the glide plane.

Experimental

The title compound (I) was prepared according to a method described earlier (Flett & Gardner, 1952). Separate solutions are prepared of isoquinoline (1.17 ml; 10 mmol) and maleic acid (1.16 g; 10 mmol) in anhydrous ether. Upon mixing, isoquinolinium maleate precipitates. This precipitate is separated by filtration, washed, and dried. It is then rapidly heated to its melting point at 103 °C and held at this temperature for a few minutes. Rapid conversion to the betaine takes place. The betaine is then purified by dissolving it in hot water and treatment with animal charcoal. The solution was set aside for the formation of crystals, yield is 79 %. Crystals suitable for crystallographic study were grown from a solution of (I) in water by slow evaporation at room temperature.

Refinement

The hydrogen atoms of the water molecule were located in the difference Fourier map and refined isotropically with the O–H distance restrained to 0.857 (2) Å. All other H atoms were placed geometrically and included in the refinement in the riding-model approximation with Uiso = 1.2 Ueq for hydrogen atoms bonded to carbon and Uiso = 1.5 Ueq for the hydroxyl hydrogen. To the quinolinium subunit rigid bond restraints were applied. Since there are no heavy atoms in the structure the Flack parameter was meaningless due to a large s.u., and the Friedel pairs were merged for the final refinement.

Figures

Fig. 1.
View of (I) with the atom labeling scheme. Displacement ellipsoids of are shown at 30% probability. Hydrogen atoms are shown as spheres of arbitrary radii.
Fig. 2.
Crystal packing of (I) viewed along the x axis.

Crystal data

C13H11NO4·H2OF(000) = 276
Mr = 263.24Dx = 1.402 Mg m3
Monoclinic, PcMo Kα radiation, λ = 0.71073 Å
Hall symbol: P -2ycCell parameters from 275 reflections
a = 10.1030 (15) Åθ = 4.6–52.0°
b = 8.0706 (8) ŵ = 0.11 mm1
c = 7.8911 (10) ÅT = 295 K
β = 104.282 (14)°Prism, colourless
V = 623.53 (14) Å30.43 × 0.19 × 0.17 mm
Z = 2

Data collection

Oxford Diffraction Xcalibur CCD diffractometer994 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.054
graphiteθmax = 29°, θmin = 3.9°
ω scanh = −13→13
7142 measured reflectionsk = −11→11
1659 independent reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.076Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.222H atoms treated by a mixture of independent and constrained refinement
S = 1.02w = 1/[σ2(Fo2) + (0.1361P)2] where P = (Fo2 + 2Fc2)/3
1659 reflections(Δ/σ)max < 0.001
178 parametersΔρmax = 0.38 e Å3
6 restraintsΔρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O50.9214 (4)0.9884 (8)0.9683 (6)0.0817 (17)
H10.865 (6)0.928 (9)0.895 (8)0.085*
H20.885 (7)1.014 (11)1.052 (7)0.086*
O30.5000 (5)0.8301 (5)0.0404 (6)0.0581 (12)
O10.5719 (5)0.7025 (7)0.6870 (6)0.0664 (14)
O40.6768 (5)0.6788 (6)0.0104 (6)0.0576 (12)
H40.64390.6955−0.0940.086*
C20.5675 (6)0.8088 (7)0.4031 (6)0.0340 (11)
H2A0.56610.92730.37560.041*
N10.4242 (5)0.7538 (5)0.3583 (6)0.0375 (10)
C40.6005 (6)0.7514 (6)0.1025 (7)0.0372 (12)
C10.6317 (6)0.7933 (7)0.6011 (7)0.0384 (12)
O20.7403 (5)0.8672 (6)0.6568 (6)0.0584 (12)
C120.2584 (7)0.5400 (7)0.3023 (7)0.0448 (13)
C30.6546 (6)0.7251 (7)0.2928 (7)0.0415 (13)
H3A0.74690.76840.32770.05*
H3B0.65890.60710.31670.05*
C130.3918 (7)0.5934 (7)0.3442 (8)0.0446 (13)
H130.46160.51530.36320.054*
C70.1528 (8)0.6561 (9)0.2716 (11)0.0632 (18)
C60.1918 (8)0.8250 (10)0.287 (2)0.115 (5)
H60.12460.90640.26870.137*
C100.0902 (11)0.3265 (12)0.251 (2)0.121 (5)
H100.06790.21450.24470.146*
C80.0157 (8)0.6063 (11)0.2240 (15)0.088 (3)
H8−0.05450.68390.19920.105*
C110.2251 (9)0.3727 (10)0.2954 (16)0.093 (3)
H110.29350.29280.32090.112*
C9−0.0115 (9)0.4417 (12)0.2152 (14)0.089 (3)
H9−0.1020.40650.1840.107*
C50.3220 (8)0.8692 (9)0.3285 (14)0.083 (3)
H50.34440.98120.33730.099*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O50.058 (3)0.088 (4)0.093 (4)0.004 (3)0.009 (3)−0.029 (3)
O30.070 (3)0.058 (3)0.044 (2)0.011 (3)0.010 (2)0.012 (2)
O10.087 (4)0.088 (3)0.0270 (19)−0.019 (3)0.020 (2)0.006 (2)
O40.074 (3)0.068 (3)0.032 (2)0.004 (2)0.0153 (19)−0.004 (2)
C20.050 (3)0.035 (3)0.0162 (18)−0.003 (2)0.0079 (19)0.0013 (18)
N10.049 (3)0.030 (2)0.031 (2)0.0015 (19)0.0078 (18)−0.0013 (17)
C40.045 (3)0.036 (3)0.030 (3)−0.011 (2)0.008 (2)−0.013 (2)
C10.040 (3)0.042 (3)0.034 (3)0.000 (2)0.009 (2)0.002 (2)
O20.056 (3)0.077 (3)0.037 (2)−0.020 (2)0.0025 (18)0.002 (2)
C120.045 (3)0.047 (3)0.039 (3)−0.004 (3)0.003 (2)0.004 (2)
C30.048 (3)0.043 (3)0.029 (3)0.000 (3)0.002 (2)0.007 (2)
C130.049 (4)0.035 (3)0.048 (3)0.002 (3)0.007 (3)0.003 (2)
C70.043 (4)0.054 (4)0.090 (5)0.003 (3)0.013 (3)−0.012 (3)
C60.037 (5)0.043 (4)0.244 (15)0.004 (3)−0.002 (6)−0.030 (6)
C100.066 (6)0.059 (5)0.215 (15)−0.022 (4)−0.010 (7)0.032 (7)
C80.039 (4)0.073 (5)0.142 (8)−0.008 (4)0.006 (4)−0.010 (6)
C110.067 (6)0.042 (4)0.152 (9)−0.010 (4)−0.008 (6)−0.001 (5)
C90.047 (5)0.085 (6)0.126 (8)−0.029 (4)0.003 (4)−0.006 (5)
C50.045 (4)0.034 (3)0.157 (8)0.008 (3)0.004 (4)−0.024 (4)

Geometric parameters (Å, °)

O5—H10.86 (6)C12—C71.396 (9)
O5—H20.86 (6)C3—H3A0.97
O3—C41.195 (7)C3—H3B0.97
O1—C11.250 (7)C13—H130.93
O4—C41.320 (7)C7—C81.402 (11)
O4—H40.82C7—C61.416 (11)
C2—N11.471 (7)C6—C51.324 (11)
C2—C31.538 (7)C6—H60.93
C2—C11.543 (6)C10—C91.364 (13)
C2—H2A0.98C10—C111.372 (12)
N1—C131.333 (7)C10—H100.93
N1—C51.368 (8)C8—C91.354 (12)
C4—C31.481 (7)C8—H80.93
C1—O21.231 (7)C11—H110.93
C12—C131.375 (8)C9—H90.93
C12—C111.389 (10)C5—H50.93
H1—O5—H2109 (7)H3A—C3—H3B107.8
C4—O4—H4109.5N1—C13—C12122.0 (5)
N1—C2—C3113.5 (4)N1—C13—H13119
N1—C2—C1111.2 (4)C12—C13—H13119
C3—C2—C1112.4 (4)C12—C7—C8121.1 (7)
N1—C2—H2A106.4C12—C7—C6116.5 (7)
C3—C2—H2A106.4C8—C7—C6122.3 (7)
C1—C2—H2A106.4C5—C6—C7121.3 (7)
C13—N1—C5119.2 (6)C5—C6—H6119.3
C13—N1—C2121.3 (5)C7—C6—H6119.3
C5—N1—C2119.5 (5)C9—C10—C11121.2 (8)
O3—C4—O4124.2 (5)C9—C10—H10119.4
O3—C4—C3123.8 (5)C11—C10—H10119.4
O4—C4—C3112.0 (5)C9—C8—C7118.0 (8)
O2—C1—O1126.7 (5)C9—C8—H8121
O2—C1—C2116.0 (5)C7—C8—H8121
O1—C1—C2117.2 (5)C10—C11—C12119.3 (8)
C13—C12—C11121.9 (6)C10—C11—H11120.3
C13—C12—C7119.5 (6)C12—C11—H11120.3
C11—C12—C7118.6 (7)C8—C9—C10121.7 (8)
C4—C3—C2113.0 (4)C8—C9—H9119.2
C4—C3—H3A109C10—C9—H9119.2
C2—C3—H3A109C6—C5—N1121.4 (7)
C4—C3—H3B109C6—C5—H5119.3
C2—C3—H3B109N1—C5—H5119.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O5—H1···O20.86 (6)2.05 (6)2.851 (7)156 (6)
O5—H2···O2i0.86 (6)2.08 (7)2.874 (7)153 (6)
O4—H4···O1ii0.821.702.518 (7)172

Symmetry codes: (i) x, −y+2, z+1/2; (ii) x, y, z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: IM2195).

References

  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flett, L. H. & Gardner, W. H. (1952). Maleic Anhydride Derivatives: Reactions of the Double Bond, p. 121. New York: John Wiley & Sons, Inc.
  • Katritsky, A. R. & Pozharskii, A. F. (2000). Handbook of Heterocyclic Chemistry, 2nd ed. Oxford: Elsevier.
  • Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst.39, 453–457.
  • Matthews, B. W., Colman, P. M., Selzer, J. O., Weaver, L. H. & Duncan, J. A. (1973). Acta Cryst. B29, 2939–2947.
  • Nardelli, M. (1995). J. Appl. Cryst.28, 659.
  • Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Abingdon, England.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Szafran, M., Katrusiak, A., Dega-Szafran, Z., Dymarska, S. & Grundwald-Wyspiańska, M. (2002). J. Mol. Struct.609, 19–28.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography