PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1425.
Published online 2010 May 22. doi:  10.1107/S1600536810017873
PMCID: PMC2979604

N-[Bis(benzylamino)phosphoryl]-2,2,2-trichloroacetamide

Abstract

In the title compound, C16H17Cl3N3O2P, the P atom has a slightly distorted tetra­hedral configuration. The conformations of the carbonyl and phosphoryl groups are anti to each other. In the crystal, inter­molecular N—H(...)O hydrogen bonds link the mol­ecules into infinite chains parallel to the b axis.

Related literature

For the use of carbacyl­amido­phosphates as potential new ligands, see: Skopenko et al. (1996 [triangle]); Ovchynnikov et al. (1998 [triangle]); Znovjak et al. (2009 [triangle]); Gubina et al. (2009 [triangle]); Gowda et al. (2010 [triangle]); Amirkhanov et al. (1997a [triangle]); Safin et al. (2009 [triangle]). For their biological activity, see: Amirkhanov et al. (1996 [triangle]); Rebrova et al. (1982 [triangle]). For P=O bond lengths, see: Amirkhanov et al. (1997b [triangle]). For the synthesis of the title compound, see: Kirsanov & Derkach (1956 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1425-scheme1.jpg

Experimental

Crystal data

  • C16H17Cl3N3O2P
  • M r = 420.65
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1425-efi1.jpg
  • a = 9.116 Å
  • b = 10.3586 (2) Å
  • c = 11.7713 (2) Å
  • α = 68.320 (1)°
  • β = 67.762 (1)°
  • γ = 86.469 (1)°
  • V = 952.13 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.58 mm−1
  • T = 293 K
  • 0.20 × 0.20 × 0.20 mm

Data collection

  • Oxford Diffraction Xcalibur3 diffractometer
  • Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009 [triangle]) T min = 0.893, T max = 0.893
  • 4976 measured reflections
  • 3286 independent reflections
  • 3069 reflections with I > 2σ(I)
  • R int = 0.016

Refinement

  • R[F 2 > 2σ(F 2)] = 0.038
  • wR(F 2) = 0.103
  • S = 1.05
  • 3286 reflections
  • 226 parameters
  • H-atom parameters constrained
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.41 e Å−3

Data collection: CrysAlis CCD (Oxford Diffraction, 2009 [triangle]); cell refinement: CrysAlis RED (Oxford Diffraction, 2009 [triangle]); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPIII (Burnett & Johnson, 1996 [triangle]), ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017873/dn2554sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017873/dn2554Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The author thanks Professor Joachim Sieler for his help with the data collection.

supplementary crystallographic information

Comment

Carbacylamidophosphates of the general formula RC(O)NHP(O)R2 are potential new ligands for metal ions (Skopenko et al., 1996; Ovchynnikov et al., 1998; Znovjak et al., 2009; Gubina et al., 2009; Amirkhanov et al., 1997a; Gowda et al., 2010; Safin et al., 2009). Many of these compounds also show biological activity, including anticancer activity (Amirkhanov et al., 1996; Rebrova et al., 1982). This work reports the structure of N,N'-dibenzyl-N"-trichloroacetylphosphortriamide (HDBA).

In the title compound, the phosphorus atom has a slightly distorted tetrahedral configuration (Fig.1). The average values of the angles OPN in the molecule are larger than tetrahedral, while the N – P – N angles are smaller, with the exception O1 – P1– N1 106.85 (7) ° and N(1) – P1– N(2) 112.32 (7) °, which can be rationalized by the influence of the hydrogen bonds. The environment of the nitrogen atoms is practically planar with only slight deviations from the mean planes.

The bond length P ═O (1.479 (1) Å is longer than in the compounds with alkyl amide substituents (the range of bond length d(P O) 1.475 - 1.478 Å) (Amirkhanov et al., 1997b). In the structure the carbonyl and phosphoryl groups are anti to each other as in most carbacylamidophosphates.

The fragment including the atoms O(2), N(1), C(1), C(2) is virtually planar, with only slight deviations from the mean plane. The phosphorus and oxygen atom of the phosphoryl group do not fit into this plane. Close enough to this plane lie the hydrogen H(1 N) and one of the chlorine atoms Cl(3). The carbonyl oxygen-phosphorus distance 3.023 (1) Å is considerably shorter than the sum of Van der Waals radii (3.3 Å).

Molecules are linked by hydrogen bonds of the phosphorylic oxygen atoms and the hydrogen atoms of the C(O)N(H)P(O) groups of neighboring molecules. The N—H···O intermolecular hydrogen bonds pack the molecules into infinite chains parallel to the b axis (Table 1, Fig.2).

Experimental

The solution of benzylamine (26.8 g, 0.25 mol) in 30 ml of chloroform was cooled to 10 °C and a solution of the dichloride of trichloroacetylamidophosphoric acid (14 g, 0.047 mol) in 150 ml of chloroform was added slowly with stirring. The temperature was not allowed to rise above 15 °C. Stirring was continued for about 40 min. The resulting mixture, containing HL, H2NCH2C6H5*HCl and excess dibenzylamine, was filtered from the precipitate (H2NCH2C6H5*HCl). Then the solution was evaporated and the residue was treated with aqueous HCl; the product precipitated as a yellow crystalline powder (90 % yield) (Kirsanov & Derkach, 1956). A colourless crystalline compound was obtained after recristallization from acetone. The compound is air stable, soluble in alcohols and hot acetone, insoluble in non-polar aprotic solvents and water, M.p. = 144 °C. Anal. Calc.: C 45.68,H 4.07, N 9.99; Found: C 45.73, H 3.95, N 9.85. IR (KBr pellet, cm-1): 1709 (s, CO) and 1250 (s, PO).

Refinement

All hydrogen atoms were located from electron density difference maps and included in the refinement in the riding motion approximation with Uiso constrained to be 1.2 times Ueq of the carrier atom.

Figures

Fig. 1.
Molecular structure of the title compound with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
Fig. 2.
Partial packing view showing the hydrogen bonds pattern. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bondings have been omitted for clarity. [Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+1, -y+2, -z+1]

Crystal data

C16H17Cl3N3O2PZ = 2
Mr = 420.65F(000) = 432
Triclinic, P1Dx = 1.467 Mg m3
Hall symbol: -P 1Melting point: 417 K
a = 9.116 ÅMo Kα radiation, λ = 0.71073 Å
b = 10.3586 (2) ÅCell parameters from 3594 reflections
c = 11.7713 (2) Åθ = 2.0–27.1°
α = 68.320 (1)°µ = 0.58 mm1
β = 67.762 (1)°T = 293 K
γ = 86.469 (1)°Block, colorless
V = 952.13 (3) Å30.20 × 0.20 × 0.20 mm

Data collection

Oxford Diffraction Xcalibur3 diffractometer3286 independent reflections
Radiation source: Enhance (Mo) X-ray Source3069 reflections with I > 2σ(I)
graphiteRint = 0.016
Detector resolution: 16.1827 pixels mm-1θmax = 25.0°, θmin = 2.0°
ω scansh = −8→10
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2009)k = −10→12
Tmin = 0.893, Tmax = 0.893l = −13→13
4976 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0496P)2 + 0.7601P] where P = (Fo2 + 2Fc2)/3
3286 reflections(Δ/σ)max < 0.001
226 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Experimental. CrysAlis RED, (Oxford Diffraction Ltd., 2007) Empirical absorption correction using spherical harmonics, implemented in SCALE3 ABSPACK scaling algorithm.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.82223 (7)0.78475 (7)0.14155 (6)0.04467 (17)
Cl20.49492 (8)0.81971 (8)0.16751 (6)0.0545 (2)
Cl30.70636 (11)1.05737 (6)0.09763 (7)0.0681 (3)
P10.47348 (6)0.66397 (5)0.59367 (5)0.02713 (15)
O10.4132 (2)0.51582 (15)0.64581 (15)0.0401 (4)
O20.6029 (2)0.94775 (15)0.37756 (16)0.0434 (4)
N10.5631 (2)0.71538 (17)0.42584 (16)0.0305 (4)
H10.58280.65230.39210.037*
N20.3308 (2)0.75943 (18)0.63801 (17)0.0304 (4)
H20.35310.83090.65110.036*
N30.6122 (2)0.7072 (2)0.63210 (18)0.0362 (4)
H30.70590.73490.57140.043*
C10.6048 (2)0.8506 (2)0.3430 (2)0.0292 (4)
C20.6555 (3)0.8776 (2)0.1924 (2)0.0331 (5)
C30.1656 (3)0.7297 (3)0.6568 (2)0.0411 (5)
H3B0.09550.76940.71850.049*
H3C0.13960.62940.69710.049*
C40.1320 (2)0.7852 (2)0.5313 (2)0.0351 (5)
C50.0480 (3)0.6995 (3)0.5043 (2)0.0449 (6)
H5A0.01780.60690.56140.054*
C60.0088 (3)0.7505 (3)0.3932 (3)0.0522 (7)
H6A−0.04720.69210.37670.063*
C70.0533 (3)0.8878 (3)0.3073 (3)0.0513 (7)
H7A0.02640.92240.23340.062*
C80.1382 (3)0.9738 (3)0.3321 (3)0.0502 (6)
H8A0.16901.06610.27420.060*
C90.1776 (3)0.9228 (3)0.4432 (2)0.0434 (6)
H9A0.23500.98130.45850.052*
C100.5851 (3)0.7012 (2)0.7652 (2)0.0363 (5)
H10A0.47260.67750.81960.044*
H10B0.61300.79320.75870.044*
C110.6781 (2)0.5975 (2)0.8338 (2)0.0302 (4)
C120.7278 (3)0.4795 (2)0.8055 (2)0.0358 (5)
H12A0.70760.46420.73950.043*
C130.8075 (3)0.3841 (2)0.8745 (2)0.0404 (5)
H13A0.84040.30580.85420.049*
C140.8382 (3)0.4048 (2)0.9736 (2)0.0423 (5)
H14A0.89180.34091.01950.051*
C150.7883 (3)0.5215 (3)1.0035 (2)0.0433 (6)
H15A0.80750.53551.07040.052*
C160.7100 (3)0.6174 (2)0.9342 (2)0.0371 (5)
H16A0.67800.69590.95440.045*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0426 (3)0.0533 (4)0.0418 (3)0.0090 (3)−0.0124 (3)−0.0263 (3)
Cl20.0497 (4)0.0798 (5)0.0460 (4)0.0072 (3)−0.0276 (3)−0.0271 (3)
Cl30.1147 (7)0.0268 (3)0.0370 (3)−0.0035 (3)−0.0111 (4)−0.0010 (3)
P10.0396 (3)0.0197 (3)0.0240 (3)0.0032 (2)−0.0134 (2)−0.0091 (2)
O10.0658 (11)0.0215 (7)0.0291 (8)−0.0007 (7)−0.0131 (7)−0.0099 (6)
O20.0678 (11)0.0236 (8)0.0377 (9)−0.0044 (7)−0.0141 (8)−0.0151 (7)
N10.0488 (10)0.0193 (8)0.0246 (9)0.0026 (7)−0.0129 (8)−0.0107 (7)
N20.0368 (9)0.0262 (9)0.0341 (9)0.0033 (7)−0.0160 (8)−0.0152 (7)
N30.0347 (10)0.0469 (11)0.0271 (9)0.0040 (8)−0.0122 (8)−0.0135 (8)
C10.0365 (11)0.0224 (10)0.0286 (10)0.0015 (8)−0.0121 (9)−0.0098 (8)
C20.0457 (12)0.0254 (10)0.0264 (10)0.0015 (9)−0.0130 (9)−0.0083 (8)
C30.0354 (12)0.0466 (13)0.0325 (12)−0.0013 (10)−0.0095 (9)−0.0083 (10)
C40.0267 (10)0.0426 (12)0.0342 (11)0.0029 (9)−0.0092 (9)−0.0147 (10)
C50.0396 (12)0.0473 (14)0.0432 (13)−0.0063 (10)−0.0106 (11)−0.0157 (11)
C60.0446 (14)0.0704 (18)0.0490 (15)−0.0061 (12)−0.0166 (12)−0.0298 (14)
C70.0426 (13)0.0755 (19)0.0417 (14)0.0074 (13)−0.0215 (11)−0.0230 (13)
C80.0509 (15)0.0487 (15)0.0487 (15)0.0046 (12)−0.0256 (12)−0.0091 (12)
C90.0460 (13)0.0406 (13)0.0484 (14)0.0012 (10)−0.0255 (11)−0.0138 (11)
C100.0413 (12)0.0419 (12)0.0343 (12)0.0056 (10)−0.0176 (10)−0.0205 (10)
C110.0308 (10)0.0335 (11)0.0243 (10)−0.0047 (8)−0.0079 (8)−0.0104 (8)
C120.0470 (12)0.0352 (11)0.0259 (10)−0.0025 (9)−0.0126 (9)−0.0126 (9)
C130.0503 (13)0.0304 (11)0.0333 (12)0.0023 (10)−0.0104 (10)−0.0096 (9)
C140.0462 (13)0.0383 (13)0.0347 (12)0.0011 (10)−0.0177 (10)−0.0029 (10)
C150.0568 (14)0.0461 (13)0.0322 (12)−0.0040 (11)−0.0239 (11)−0.0118 (10)
C160.0465 (13)0.0384 (12)0.0323 (11)0.0004 (10)−0.0166 (10)−0.0174 (10)

Geometric parameters (Å, °)

Cl1—C21.775 (2)C6—C71.381 (4)
Cl2—C21.775 (2)C6—H6A0.9300
Cl3—C21.763 (2)C7—C81.388 (4)
P1—O11.4787 (15)C7—H7A0.9300
P1—N21.6282 (17)C8—C91.392 (4)
P1—N31.6296 (19)C8—H8A0.9300
P1—N11.7055 (17)C9—H9A0.9300
O2—C11.213 (2)C10—C111.514 (3)
N1—C11.354 (3)C10—H10A0.9700
N1—H10.8600C10—H10B0.9700
N2—C31.472 (3)C11—C121.389 (3)
N2—H20.8600C11—C161.404 (3)
N3—C101.469 (3)C12—C131.389 (3)
N3—H30.8600C12—H12A0.9300
C1—C21.570 (3)C13—C141.387 (3)
C3—C41.516 (3)C13—H13A0.9300
C3—H3B0.9700C14—C151.385 (4)
C3—H3C0.9700C14—H14A0.9300
C4—C91.391 (3)C15—C161.384 (3)
C4—C51.398 (3)C15—H15A0.9300
C5—C61.391 (4)C16—H16A0.9300
C5—H5A0.9300
O1—P1—N2111.32 (10)C7—C6—C5120.0 (2)
O1—P1—N3119.71 (10)C7—C6—H6A120.0
N2—P1—N3104.09 (9)C5—C6—H6A120.0
O1—P1—N1106.89 (8)C6—C7—C8119.5 (2)
N2—P1—N1112.12 (9)C6—C7—H7A120.2
N3—P1—N1102.49 (9)C8—C7—H7A120.2
C1—N1—P1123.22 (14)C7—C8—C9120.5 (3)
C1—N1—H1118.4C7—C8—H8A119.8
P1—N1—H1118.4C9—C8—H8A119.8
C3—N2—P1123.37 (15)C4—C9—C8120.6 (2)
C3—N2—H2118.3C4—C9—H9A119.7
P1—N2—H2118.3C8—C9—H9A119.7
C10—N3—P1123.29 (15)N3—C10—C11114.51 (18)
C10—N3—H3118.4N3—C10—H10A108.6
P1—N3—H3118.4C11—C10—H10A108.6
O2—C1—N1124.99 (19)N3—C10—H10B108.6
O2—C1—C2120.05 (18)C11—C10—H10B108.6
N1—C1—C2114.96 (17)H10A—C10—H10B107.6
C1—C2—Cl3109.68 (14)C12—C11—C16118.3 (2)
C1—C2—Cl1109.66 (14)C12—C11—C10122.64 (18)
Cl3—C2—Cl1109.28 (12)C16—C11—C10119.02 (19)
C1—C2—Cl2109.45 (15)C11—C12—C13120.7 (2)
Cl3—C2—Cl2109.43 (12)C11—C12—H12A119.6
Cl1—C2—Cl2109.32 (11)C13—C12—H12A119.6
N2—C3—C4114.92 (18)C14—C13—C12120.5 (2)
N2—C3—H3B108.5C14—C13—H13A119.8
C4—C3—H3B108.5C12—C13—H13A119.8
N2—C3—H3C108.5C15—C14—C13119.4 (2)
C4—C3—H3C108.5C15—C14—H14A120.3
H3B—C3—H3C107.5C13—C14—H14A120.3
C9—C4—C5118.2 (2)C16—C15—C14120.3 (2)
C9—C4—C3121.5 (2)C16—C15—H15A119.8
C5—C4—C3120.2 (2)C14—C15—H15A119.8
C6—C5—C4121.1 (2)C15—C16—C11120.8 (2)
C6—C5—H5A119.4C15—C16—H16A119.6
C4—C5—H5A119.4C11—C16—H16A119.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.861.952.790 (2)167
N2—H2···O2ii0.862.233.055 (2)161

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y+2, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2554).

References

  • Amirkhanov, V. M., Ovchynnikov, V. A., Glowiak, T. & Kozlowski, H. (1997b). Z. Naturforsch. Teil B, 52, 1331–1336.
  • Amirkhanov, V., Ovchynnikov, V., Legendziewicz, J., Graczyk, A., Hanuza, J. & Macalik, L. (1996). Acta Phys. Pol.90, 455–460.
  • Amirkhanov, V. M., Ovchynnikov, V. A., Turov, A. V. & Skopenko, V. V. (1997a). Zh. Obshch. Khim.23, 139–142.
  • Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Gowda, B. T., Foro, S., Suchetan, P. A. & Fuess, H. (2010). Acta Cryst. E66, o747. [PMC free article] [PubMed]
  • Gubina, K. E., Maslov, O. A., Trush, E. A., Trush, V. A., Ovchynnikov, V. A., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 2661–2666.
  • Kirsanov, A. & Derkach, G. (1956). Zh. Obshch. Khim.28, 2247–2250.
  • Ovchynnikov, V. A., Amirkhanov, V. M., Kapshuk, A. A., Sliva, T. Yu., Glowiak, T. & Kozlowski, H. (1998). Z. Naturforsch. Teil B, 53, 836–840.
  • Oxford Diffraction (2009). CrysAlis RED and CrysAlis CCD Oxford Diffraction Ltd, Yarnton, England.
  • Rebrova, O. H., Biyushkin, V. N., Malinovskiy, T. I., Procenko, L. D. & Dneprova, T. N. (1982). Dokl. Akad. Nauk SSSR, 266, 1391–1395.
  • Safin, D. A., Bolte, M., Shakirova, E. R. & Babashkina, M. G. (2009). Polyhedron, 28, 501–504.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Skopenko, V. V., Amirkhanov, V. M., Ovchinnikov, V. A. & Turov, A. V. (1996). Russ. J. Inorg. Chem.41, 611–616.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Znovjak, K. O., Moroz, O. V., Ovchynnikov, V. A., Sliva, T. Yu., Shishkina, S. V. & Amirkhanov, V. M. (2009). Polyhedron, 28, 3731–3738.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography