PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1248.
Published online 2010 May 8. doi:  10.1107/S1600536810015308
PMCID: PMC2979585

3,5-Dibromo-2′,3′,4′,5′,6′-penta­methyl-1,1′-biphen­yl

Abstract

In the crystal structure of the title compound, C17H18Br2, the benzene rings are almost perpendicular [dihedral angle = 84.0 (3)°]. The crystal structure is consolidated by the presence of C—Br(...)π inter­actions.

Related literature

For structures of related methyl substituted biphenyls, see: Fröhlich & Musso (1985 [triangle]); Hafelinger & Strähle (1976 [triangle]); Hartmann & Niemeyer (2001 [triangle]); Niemeyer (2006 [triangle]); Pickett (1936 [triangle]); Rathore et al. (1997 [triangle]). For background to ligands containing m-terphenyl groups, see: Berthiol et al. (2004 [triangle]); Cocchi et al. (2007 [triangle]); Collins et al. (2002 [triangle]); Du et al. (1986 [triangle]); Kim et al. (2005 [triangle]); Konishi et al. (2006 [triangle]); Matsumoto et al. (2004 [triangle]); Power (2004 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1248-scheme1.jpg

Experimental

Crystal data

  • C17H18Br2
  • M r = 382.13
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1248-efi1.jpg
  • a = 9.011 (5) Å
  • b = 14.065 (8) Å
  • c = 12.387 (7) Å
  • β = 94.613 (9)°
  • V = 1564.8 (15) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 5.17 mm−1
  • T = 297 K
  • 0.35 × 0.32 × 0.29 mm

Data collection

  • Bruker SMART APEX CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.265, T max = 0.316
  • 10702 measured reflections
  • 2760 independent reflections
  • 1588 reflections with I > 2σ(I)
  • R int = 0.127

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.150
  • S = 0.94
  • 2760 reflections
  • 178 parameters
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT-Plus (Bruker, 2001 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: DIAMOND (Brandenburg, 2009 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
C–Br(...)π inter­actions (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015308/pk2243sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015308/pk2243Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the National University Research Council (CNCSIS) of Romania (project RP 2/January 2008). SR thanks Babeş-Bolyai University for a research fellowship (21/2009). We thank Dr Richard A. Varga for the crystallographic measurements and data refinement.

supplementary crystallographic information

Comment

Ligands containing m-terphenyl groups are known to stabilize many classes of compounds (Power, 2004).

The m-terphenyl organic precursors are prepared by coupling, via a two aryne sequence, between aromatic halides and two equivalents of Grignard reagent (Du et al., 1986) or by palladium catalyzed cross-coupling reactions (Collins et al., 2002; Matsumoto et al., 2004; Berthiol et al., 2004; Kim et al., 2005; Konishi et al., 2006; Cocchi et al., 2007).

The title compound was obtained as a side-product in the preparation of 3,5-(2,3,4,5,6-Me5C6)2C6H3Br by the Suzuki cross-coupling between 2,3,4,5,6-Me5C6B(OH)2 and 1,3,5-Br3C6H3.

The dihedral angle between the planes containing the two benzene rings is 84.0 (3)° (Fig. 1), similar to those observed for the closest related compounds 2,3,4,5,6,4'-hexamethylbiphenyl tetrachloro-p-benzoquinone adduct (Rathore et al., 1997) or 2-iodo-2',3',4',5',6'-pentamethylbiphenyl (Hartmann & Niemeyer, 2001). The bond lengths and bonding angles are normal.

In the crystal structure there are intermolecular interactions between the bromine atoms and the π electrons the methyl substituted benzene rings (Fig. 2 and Table 1).

Experimental

Colourless crystals were obtained by slow evaporation of the solvents from solutions of the title compound in a mixture of dichloromethane and hexane. mp = 177–178 °C. 1H NMR (300 MHz, CDCl3): δ 1.95 (s, 6H), 2.25 (s, 6H), 2.30 (s, 3H), 7.24 (d, J = 1.8 Hz, 2H), 7.66 (t, J = 1.8 Hz, 1H). 13C NMR (75 MHz, CDCl3): δ 16.71, 16.98, 18.56, 123.00, 131.32, 131.58, 132.15, 132.76, 135.02, 137.14, 146.98.

Refinement

Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic hydrogen atoms and 1.5 for hydrogen atoms of the methyl groups. Methyl hydrogen atoms were allowed to rotate but not to tip.

Figures

Fig. 1.
Crystal structure of the title compound with labelling and displacement ellipsoids of Br and C atoms drawn at 25 % probability level.
Fig. 2.
Intermolecular Br···π interactions (shown as dashed lines) in the structure of the title compound. Cg2 is the centroid of the benzene ring C7–C12. Symmetry codes: (i) 1+x, y, z; (ii) -1+x, y, z.

Crystal data

C17H18Br2F(000) = 760
Mr = 382.13Dx = 1.622 Mg m3
Monoclinic, P21/nMelting point = 451–450 K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 9.011 (5) ÅCell parameters from 2189 reflections
b = 14.065 (8) Åθ = 2.7–22.4°
c = 12.387 (7) ŵ = 5.17 mm1
β = 94.613 (9)°T = 297 K
V = 1564.8 (15) Å3Blocks, colourless
Z = 40.35 × 0.32 × 0.29 mm

Data collection

Bruker SMART APEX CCD area-detector diffractometer2760 independent reflections
Radiation source: fine-focus sealed tube1588 reflections with I > 2σ(I)
graphiteRint = 0.127
[var phi] and ω scansθmax = 25.0°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −10→10
Tmin = 0.265, Tmax = 0.316k = −16→16
10702 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057H-atom parameters constrained
wR(F2) = 0.150w = 1/[σ2(Fo2) + (0.0001P)2] where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max = 0.001
2760 reflectionsΔρmax = 0.67 e Å3
178 parametersΔρmin = −0.53 e Å3
0 restraintsExtinction correction: (SHELXL97; Sheldrick, 2008)
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0150 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br11.08347 (7)0.76924 (6)0.65316 (7)0.0714 (4)
Br20.65525 (8)1.06226 (5)0.62304 (8)0.0736 (4)
C10.8834 (7)0.8091 (5)0.6463 (5)0.0440 (16)
C20.8516 (6)0.9036 (5)0.6407 (5)0.0498 (17)
H20.92750.94850.64150.06*
C30.7030 (7)0.9318 (4)0.6337 (5)0.0473 (16)
C40.5917 (6)0.8654 (4)0.6332 (4)0.0376 (15)
H40.49280.8850.62790.045*
C50.6246 (6)0.7700 (4)0.6404 (5)0.0392 (15)
C60.7720 (6)0.7427 (4)0.6455 (5)0.0428 (15)
H60.79620.67840.64830.051*
C70.5039 (6)0.6982 (4)0.6411 (5)0.0394 (15)
C80.4465 (6)0.6539 (4)0.5448 (5)0.0445 (16)
C90.3389 (6)0.5839 (4)0.5454 (6)0.0468 (17)
C100.2872 (7)0.5553 (5)0.6454 (7)0.0544 (18)
C110.3451 (7)0.5992 (5)0.7412 (6)0.0484 (17)
C120.4511 (6)0.6700 (4)0.7391 (5)0.0444 (16)
C130.5038 (7)0.6859 (5)0.4388 (5)0.0609 (19)
H13A0.53040.63120.39810.091*
H13B0.58980.72550.45350.091*
H13C0.42760.72110.39760.091*
C140.2779 (8)0.5413 (5)0.4401 (6)0.067 (2)
H14A0.24680.59120.39040.101*
H14B0.19420.50160.45220.101*
H14C0.35360.50390.41010.101*
C150.1694 (8)0.4811 (6)0.6491 (8)0.086 (3)
H15A0.19190.44060.71060.129*
H15B0.16590.44370.5840.129*
H15C0.07470.51110.65490.129*
C160.2841 (9)0.5705 (6)0.8452 (7)0.084 (3)
H16A0.32780.60920.90310.126*
H16B0.30730.50490.85990.126*
H16C0.1780.57890.83920.126*
C170.5056 (8)0.7204 (5)0.8418 (6)0.065 (2)
H17A0.42640.75810.86680.097*
H17B0.58770.76090.82790.097*
H17C0.53740.67440.8960.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0413 (5)0.1017 (7)0.0722 (6)0.0182 (4)0.0113 (4)−0.0009 (5)
Br20.0704 (6)0.0468 (5)0.1041 (8)0.0015 (4)0.0105 (5)−0.0050 (4)
C10.041 (3)0.054 (4)0.038 (4)0.012 (3)0.011 (3)−0.001 (3)
C20.037 (4)0.073 (5)0.042 (4)−0.011 (3)0.016 (3)−0.005 (4)
C30.042 (4)0.053 (4)0.048 (4)0.001 (3)0.009 (3)−0.005 (3)
C40.035 (3)0.046 (4)0.032 (4)0.007 (3)0.008 (3)0.000 (3)
C50.040 (3)0.049 (4)0.030 (3)0.001 (3)0.011 (3)0.000 (3)
C60.044 (4)0.045 (4)0.040 (4)0.011 (3)0.006 (3)−0.002 (3)
C70.040 (3)0.040 (3)0.039 (4)0.003 (3)0.009 (3)−0.002 (3)
C80.044 (4)0.048 (4)0.041 (4)0.009 (3)0.006 (3)−0.002 (3)
C90.030 (3)0.051 (4)0.059 (5)0.006 (3)0.002 (3)−0.006 (3)
C100.043 (4)0.050 (4)0.072 (6)0.007 (3)0.013 (4)0.012 (4)
C110.042 (4)0.056 (4)0.050 (5)0.015 (3)0.022 (3)0.008 (4)
C120.038 (3)0.054 (4)0.043 (4)0.006 (3)0.011 (3)−0.004 (3)
C130.070 (5)0.068 (5)0.046 (5)−0.005 (4)0.016 (4)−0.002 (4)
C140.061 (4)0.071 (5)0.068 (6)−0.006 (4)−0.001 (4)−0.020 (4)
C150.060 (5)0.088 (6)0.113 (8)−0.023 (4)0.024 (5)0.012 (5)
C160.067 (5)0.110 (7)0.080 (6)−0.005 (5)0.036 (5)0.016 (5)
C170.077 (5)0.071 (5)0.048 (5)0.006 (4)0.019 (4)−0.006 (4)

Geometric parameters (Å, °)

Br1—C11.883 (6)C10—C151.491 (9)
Br2—C31.887 (6)C11—C121.381 (8)
C1—C21.361 (8)C11—C161.496 (10)
C1—C61.370 (8)C12—C171.504 (9)
C2—C31.392 (8)C13—H13A0.96
C2—H20.93C13—H13B0.96
C3—C41.370 (8)C13—H13C0.96
C4—C51.376 (8)C14—H14A0.96
C4—H40.93C14—H14B0.96
C5—C61.379 (7)C14—H14C0.96
C5—C71.484 (8)C15—H15A0.96
C6—H60.93C15—H15B0.96
C7—C121.397 (8)C15—H15C0.96
C7—C81.408 (8)C16—H16A0.96
C8—C91.382 (8)C16—H16B0.96
C8—C131.517 (9)C16—H16C0.96
C9—C101.417 (10)C17—H17A0.96
C9—C141.499 (9)C17—H17B0.96
C10—C111.401 (10)C17—H17C0.96
C2—C1—C6121.0 (6)C11—C12—C7120.4 (6)
C2—C1—Br1119.3 (5)C11—C12—C17120.2 (6)
C6—C1—Br1119.7 (5)C7—C12—C17119.3 (6)
C1—C2—C3118.6 (6)C8—C13—H13A109.5
C1—C2—H2120.7C8—C13—H13B109.5
C3—C2—H2120.7H13A—C13—H13B109.5
C4—C3—C2120.4 (6)C8—C13—H13C109.5
C4—C3—Br2120.0 (5)H13A—C13—H13C109.5
C2—C3—Br2119.6 (5)H13B—C13—H13C109.5
C3—C4—C5120.7 (6)C9—C14—H14A109.5
C3—C4—H4119.6C9—C14—H14B109.5
C5—C4—H4119.6H14A—C14—H14B109.5
C4—C5—C6118.4 (6)C9—C14—H14C109.5
C4—C5—C7120.6 (5)H14A—C14—H14C109.5
C6—C5—C7121.0 (5)H14B—C14—H14C109.5
C1—C6—C5120.9 (6)C10—C15—H15A109.5
C1—C6—H6119.6C10—C15—H15B109.5
C5—C6—H6119.6H15A—C15—H15B109.5
C12—C7—C8118.9 (6)C10—C15—H15C109.5
C12—C7—C5120.0 (6)H15A—C15—H15C109.5
C8—C7—C5121.0 (6)H15B—C15—H15C109.5
C9—C8—C7121.4 (6)C11—C16—H16A109.5
C9—C8—C13120.2 (6)C11—C16—H16B109.5
C7—C8—C13118.4 (6)H16A—C16—H16B109.5
C8—C9—C10119.2 (6)C11—C16—H16C109.5
C8—C9—C14119.2 (7)H16A—C16—H16C109.5
C10—C9—C14121.6 (6)H16B—C16—H16C109.5
C11—C10—C9119.3 (6)C12—C17—H17A109.5
C11—C10—C15120.1 (7)C12—C17—H17B109.5
C9—C10—C15120.7 (7)H17A—C17—H17B109.5
C12—C11—C10120.9 (6)C12—C17—H17C109.5
C12—C11—C16120.9 (7)H17A—C17—H17C109.5
C10—C11—C16118.2 (7)H17B—C17—H17C109.5
C6—C1—C2—C3−0.2 (9)C7—C8—C9—C10−1.0 (9)
Br1—C1—C2—C3178.9 (5)C13—C8—C9—C10−180.0 (6)
C1—C2—C3—C40.4 (9)C7—C8—C9—C14177.9 (5)
C1—C2—C3—Br2−178.8 (5)C13—C8—C9—C14−1.0 (9)
C2—C3—C4—C50.5 (9)C8—C9—C10—C110.6 (9)
Br2—C3—C4—C5179.7 (4)C14—C9—C10—C11−178.3 (6)
C3—C4—C5—C6−1.6 (8)C8—C9—C10—C15179.0 (6)
C3—C4—C5—C7179.3 (6)C14—C9—C10—C150.1 (9)
C2—C1—C6—C5−0.9 (9)C9—C10—C11—C120.2 (9)
Br1—C1—C6—C5−180.0 (4)C15—C10—C11—C12−178.2 (6)
C4—C5—C6—C11.8 (9)C9—C10—C11—C16177.5 (6)
C7—C5—C6—C1−179.1 (6)C15—C10—C11—C16−0.9 (9)
C4—C5—C7—C12−89.5 (7)C10—C11—C12—C7−0.8 (9)
C6—C5—C7—C1291.4 (7)C16—C11—C12—C7−178.0 (6)
C4—C5—C7—C894.0 (7)C10—C11—C12—C17176.4 (6)
C6—C5—C7—C8−85.0 (7)C16—C11—C12—C17−0.8 (9)
C12—C7—C8—C90.5 (9)C8—C7—C12—C110.4 (9)
C5—C7—C8—C9177.0 (5)C5—C7—C12—C11−176.1 (5)
C12—C7—C8—C13179.5 (5)C8—C7—C12—C17−176.8 (5)
C5—C7—C8—C13−4.0 (8)C5—C7—C12—C176.7 (8)

Table 1 C–Br···π interactions (Å, °)

Cg2 is the centroid of the C7–C12 benzene ring.

YX···CgYXX···CgY···CgYX···Cg
C1—Br1···Cg2i1.883 (6)3.464 (3)5.283 (8)161.4 (2)

Symmetry code: (i) 1+x, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2243).

References

  • Berthiol, F., Kondolff, I., Doucet, H. & Santelli, M. (2004). J. Organomet. Chem.689, 2786–2798.
  • Brandenburg, K. (2009). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART and SADABS Bruker AXS Inc., Madison,Wisconsin, USA.
  • Bruker (2001). SAINT-Plus Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cocchi, M., Virgili, D., Fattori, V., Rochester, D. L. & Williams, J. A. G. (2007). Adv. Funct. Mater.17, 285–289.
  • Collins, S. K., Yap, G. P. A. & Fallis, A. G. (2002). Org. Lett.4, 11–14. [PubMed]
  • Du, C.-J. F., Hart, H. & Ng, K.-K. D. (1986). J. Org. Chem.51, 3162–3165.
  • Fröhlich, R. & Musso, H. (1985). Chem. Ber.118, 4649–4651.
  • Hafelinger, G. & Strähle, J. (1976). Z. Naturforsch. Teil B, 31, 1155–1156.
  • Hartmann, N. & Niemeyer, M. (2001). Synth. Commun.31, 3839–3845.
  • Kim, J.-K., Hong, M.-K., Ahn, J.-H. & Lee, M. (2005). Angew. Chem. Int. Ed.44, 328–332. [PubMed]
  • Konishi, K., Yamaguchi, H. & Harada, A. (2006). Chem. Lett.35, 720–721.
  • Matsumoto, K., Hatano, K., Umezawa, N. & Higuchi, T. (2004). Synthesis, pp. 2181–2185.
  • Niemeyer, M. (2006). Private communication (refcode: LESYOY). CCDC, Cambridge, England.
  • Pickett, L. W. (1936). J. Am. Chem. Soc.58, 2299–2303.
  • Power, P. P. (2004). J. Organomet. Chem.689, 3904–3919.
  • Rathore, R., Lindeman, S. V. & Kochi, J. K. (1997). J. Am. Chem. Soc.119, 9393–9404.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography