PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1320.
Published online 2010 May 12. doi:  10.1107/S1600536810016405
PMCID: PMC2979584

1,10-Phenanthroline–dithio­oxamide (2/1)

Abstract

The asymmetric unit of the title compound, C12H8N2·0.5C2H4N2S2, contains one 1,10-phenanthroline mol­ecule and a half-mol­ecule of dithio­oxamide, which lies across a crystallographic inversion center. The 1,10-phenanthroline unit is not strictly planar, with dihedral angles between the central benzene ring and the pyridine rings of 1.42 (10) and 1.40 (10)°. In the crystal structure, two 1,10-phenanthroline mol­ecules are linked together by one dithio­oxamide via inter­molecular N—H(...)N hydrogen bonds.

Related literature

For background to the chemistry of 1,10-phenanthroline, see: Goswami et al. (2005 [triangle]); Han et al. (2009 [triangle]); Ishida et al. (2010 [triangle]). For a related structure, see: Fun et al. (2010 [triangle]). For standard bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used for the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1320-scheme1.jpg

Experimental

Crystal data

  • C12H8N2·0.5C2H4N2S2
  • M r = 240.30
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1320-efi1.jpg
  • a = 10.5481 (3) Å
  • b = 10.0544 (3) Å
  • c = 13.9960 (4) Å
  • β = 130.145 (2)°
  • V = 1134.65 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 100 K
  • 0.28 × 0.26 × 0.10 mm

Data collection

  • Bruker SMART APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.931, T max = 0.974
  • 22512 measured reflections
  • 3374 independent reflections
  • 2307 reflections with I > 2σ(I)
  • R int = 0.074

Refinement

  • R[F 2 > 2σ(F 2)] = 0.062
  • wR(F 2) = 0.160
  • S = 1.07
  • 3374 reflections
  • 162 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.24 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016405/lh5039sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016405/lh5039Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Universiti Sains Malaysia (USM) for the Research University Golden Goose Grant (1001/PFIZIK/811012). WSL thanks the Malaysian Government and USM for the award of Research Fellowship. SG and ACM thank the CSIR [No. 01 (2292)/09/ EMR-II], Government of India, for financial support.

supplementary crystallographic information

Comment

1,10-Phenanthroline plays a very important role in the field of molecular recognition and supramolecular chemistry (Goswami et al., 2005). We have used 1,10-phenanthroline in the recognition of urea by designed synthetic receptors (Goswami et al., 2005). The title compound is also used in supramolecular co-ordination chemistry (Ishida et al., 2010; Han et al., 2009). Here we report the co-crystal of the 1,10-phenanthroline and guest molecule dithiooxamide.

The asymmetric unit (Fig. 1), consists of one 1,10-phenanthroline and a half dithiooxamide. The dithiooxamide lies across a crystallographic inversion center [symmetry code = -x+2, -y+2, -z+1]. The 1,10-phenanthroline unit is not strictly planar, with dihedral angles between the central ring and the C1–C4/C12/N1 and C7–C10/N2/C11 rings of 1.42 (10) and 1.40 (10)°, respectively. The bond lengths are within normal ranges (Allen et al., 1987) and are comparable to those observed for closely related structure (Fun et al., 2010).

In the crystal structure (Fig. 2), two 1,10-phenanthroline molecules are linked together by one dithiooxamide via intermolecular N3—H3C···N1(-x+1, y+1/2, -z+1/2) hydrogen bonds (Table 1).

Experimental

A mixture of commercially available 1,10-phenanthroline and dithiooxamide (1:1) was dissolved in methanol-chloroform (v/v 2:1). Single crystals were grown by slow evaporation of the solvent.

Refinement

H3B and H3C were located in a difference Fourier map and refined freely [N–H = 0.82 (2) and 0.85 (2) Å]. The remaining H atoms were positioned geometrically and refined using a riding model with Uiso(H) = 1.2 Ueq(C) [C–H = 0.93 Å]. In the final difference Fourier map, the highest peak and the deepest hole are 0.77 and 0.60 Å, respectively, from atom S1.

Figures

Fig. 1.
The molecular structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme. Atoms with suffix A [S1A, C13A and N3A] were generated by symmetry code -x+2, -y+2, -z+1.
Fig. 2.
The crystal packing of the title compound, viewed along the a axis. H atoms not involved in the intermolecular interactions (dashed lines) have been omitted for clarity.

Crystal data

C12H8N2·0.5C2H4N2S2F(000) = 500
Mr = 240.30Dx = 1.407 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5115 reflections
a = 10.5481 (3) Åθ = 2.5–30.1°
b = 10.0544 (3) ŵ = 0.26 mm1
c = 13.9960 (4) ÅT = 100 K
β = 130.145 (2)°Block, orange
V = 1134.65 (6) Å30.28 × 0.26 × 0.10 mm
Z = 4

Data collection

Bruker SMART APEXII CCD area-detector diffractometer3374 independent reflections
Radiation source: fine-focus sealed tube2307 reflections with I > 2σ(I)
graphiteRint = 0.074
[var phi] and ω scansθmax = 30.3°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −14→14
Tmin = 0.931, Tmax = 0.974k = −14→13
22512 measured reflectionsl = −19→19

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.160H atoms treated by a mixture of independent and constrained refinement
S = 1.07w = 1/[σ2(Fo2) + (0.0764P)2 + 0.8154P] where P = (Fo2 + 2Fc2)/3
3374 reflections(Δ/σ)max < 0.001
162 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = −0.40 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.3548 (2)0.2611 (2)0.34019 (17)0.0185 (4)
N20.5551 (2)0.4592 (2)0.36522 (18)0.0217 (4)
N30.8022 (2)0.9404 (2)0.36819 (19)0.0201 (4)
C10.2582 (3)0.1675 (2)0.3304 (2)0.0217 (5)
H1A0.15910.14820.25120.026*
C20.2959 (3)0.0962 (2)0.4317 (2)0.0234 (5)
H2A0.22410.03130.41980.028*
C30.4421 (3)0.1243 (3)0.5494 (2)0.0247 (5)
H3A0.46980.07910.61860.030*
C40.5493 (3)0.2219 (2)0.5643 (2)0.0193 (5)
C50.7051 (3)0.2534 (3)0.6845 (2)0.0240 (5)
H5A0.73820.20720.75490.029*
C60.8035 (3)0.3489 (3)0.6961 (2)0.0236 (5)
H6A0.90440.36700.77460.028*
C70.7561 (3)0.4235 (2)0.5902 (2)0.0193 (5)
C80.8544 (3)0.5272 (3)0.6009 (2)0.0248 (5)
H8A0.95280.55080.67900.030*
C90.8045 (3)0.5928 (3)0.4964 (3)0.0277 (6)
H9A0.86880.66040.50150.033*
C100.6528 (3)0.5553 (3)0.3803 (2)0.0267 (5)
H10A0.61900.60110.30950.032*
C110.6054 (3)0.3938 (2)0.4689 (2)0.0182 (5)
C120.4998 (3)0.2896 (2)0.4565 (2)0.0170 (4)
C130.9644 (3)0.9392 (2)0.4567 (2)0.0196 (5)
S11.08871 (7)0.81821 (6)0.47638 (6)0.02354 (18)
H3C0.752 (4)0.884 (3)0.314 (3)0.030 (8)*
H3B0.754 (4)1.004 (3)0.366 (3)0.032 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0163 (8)0.0198 (10)0.0163 (9)−0.0001 (7)0.0091 (7)−0.0012 (7)
N20.0213 (9)0.0205 (10)0.0208 (9)−0.0015 (8)0.0125 (8)0.0007 (8)
N30.0170 (9)0.0203 (11)0.0173 (9)−0.0006 (8)0.0085 (8)−0.0037 (8)
C10.0182 (9)0.0207 (12)0.0216 (11)−0.0002 (9)0.0108 (9)−0.0009 (9)
C20.0224 (10)0.0200 (12)0.0290 (12)−0.0002 (9)0.0171 (10)0.0038 (10)
C30.0234 (11)0.0260 (13)0.0237 (12)0.0047 (9)0.0148 (10)0.0081 (10)
C40.0183 (9)0.0211 (12)0.0172 (10)0.0025 (8)0.0108 (8)0.0014 (9)
C50.0203 (10)0.0314 (14)0.0149 (10)0.0062 (9)0.0090 (9)0.0033 (10)
C60.0184 (10)0.0304 (14)0.0152 (10)0.0028 (9)0.0078 (9)−0.0042 (9)
C70.0154 (9)0.0196 (12)0.0200 (11)0.0023 (8)0.0101 (8)−0.0039 (9)
C80.0147 (9)0.0235 (13)0.0285 (12)−0.0012 (8)0.0104 (9)−0.0049 (10)
C90.0230 (11)0.0205 (13)0.0401 (15)−0.0037 (9)0.0206 (11)−0.0027 (11)
C100.0255 (11)0.0250 (13)0.0280 (12)−0.0015 (10)0.0166 (10)0.0028 (10)
C110.0165 (9)0.0186 (12)0.0177 (10)0.0012 (8)0.0103 (8)−0.0010 (9)
C120.0172 (9)0.0160 (11)0.0164 (10)0.0021 (8)0.0102 (8)−0.0007 (8)
C130.0205 (10)0.0239 (13)0.0157 (10)−0.0008 (9)0.0122 (9)0.0015 (9)
S10.0235 (3)0.0213 (3)0.0248 (3)0.0033 (2)0.0151 (2)−0.0009 (2)

Geometric parameters (Å, °)

N1—C11.328 (3)C5—C61.344 (4)
N1—C121.364 (3)C5—H5A0.9300
N2—C101.326 (3)C6—C71.433 (3)
N2—C111.352 (3)C6—H6A0.9300
N3—C131.315 (3)C7—C81.408 (3)
N3—H3C0.81 (3)C7—C111.420 (3)
N3—H3B0.81 (3)C8—C91.364 (4)
C1—C21.398 (3)C8—H8A0.9300
C1—H1A0.9300C9—C101.411 (3)
C2—C31.377 (3)C9—H9A0.9300
C2—H2A0.9300C10—H10A0.9300
C3—C41.407 (3)C11—C121.456 (3)
C3—H3A0.9300C13—C13i1.535 (5)
C4—C121.412 (3)C13—S11.676 (2)
C4—C51.438 (3)
C1—N1—C12117.8 (2)C7—C6—H6A119.3
C10—N2—C11117.2 (2)C8—C7—C11117.5 (2)
C13—N3—H3C123 (2)C8—C7—C6122.4 (2)
C13—N3—H3B117 (2)C11—C7—C6120.1 (2)
H3C—N3—H3B120 (3)C9—C8—C7119.7 (2)
N1—C1—C2124.2 (2)C9—C8—H8A120.1
N1—C1—H1A117.9C7—C8—H8A120.1
C2—C1—H1A117.9C8—C9—C10118.2 (2)
C3—C2—C1118.3 (2)C8—C9—H9A120.9
C3—C2—H2A120.8C10—C9—H9A120.9
C1—C2—H2A120.8N2—C10—C9124.5 (2)
C2—C3—C4119.6 (2)N2—C10—H10A117.8
C2—C3—H3A120.2C9—C10—H10A117.8
C4—C3—H3A120.2N2—C11—C7122.9 (2)
C3—C4—C12118.0 (2)N2—C11—C12118.79 (19)
C3—C4—C5122.0 (2)C7—C11—C12118.3 (2)
C12—C4—C5120.0 (2)N1—C12—C4122.1 (2)
C6—C5—C4120.7 (2)N1—C12—C11118.4 (2)
C6—C5—H5A119.7C4—C12—C11119.46 (19)
C4—C5—H5A119.7N3—C13—C13i114.4 (3)
C5—C6—C7121.4 (2)N3—C13—S1124.50 (19)
C5—C6—H6A119.3C13i—C13—S1121.1 (2)
C12—N1—C1—C2−0.2 (3)C10—N2—C11—C12178.7 (2)
N1—C1—C2—C30.2 (4)C8—C7—C11—N20.9 (3)
C1—C2—C3—C4−0.7 (4)C6—C7—C11—N2−179.0 (2)
C2—C3—C4—C121.3 (4)C8—C7—C11—C12−178.2 (2)
C2—C3—C4—C5−178.6 (2)C6—C7—C11—C121.9 (3)
C3—C4—C5—C6−178.7 (2)C1—N1—C12—C40.8 (3)
C12—C4—C5—C61.4 (4)C1—N1—C12—C11−178.8 (2)
C4—C5—C6—C70.8 (4)C3—C4—C12—N1−1.3 (3)
C5—C6—C7—C8177.7 (2)C5—C4—C12—N1178.6 (2)
C5—C6—C7—C11−2.4 (3)C3—C4—C12—C11178.2 (2)
C11—C7—C8—C9−1.3 (3)C5—C4—C12—C11−1.8 (3)
C6—C7—C8—C9178.6 (2)N2—C11—C12—N10.7 (3)
C7—C8—C9—C101.2 (4)C7—C11—C12—N1179.81 (19)
C11—N2—C10—C90.3 (4)N2—C11—C12—C4−178.9 (2)
C8—C9—C10—N2−0.7 (4)C7—C11—C12—C40.2 (3)
C10—N2—C11—C7−0.4 (3)

Symmetry codes: (i) −x+2, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N3—H3C···N1ii0.81 (3)2.08 (3)2.876 (3)167 (4)

Symmetry codes: (ii) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5039).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Fun, H.-K., Chantrapromma, S., Maity, A. C. & Goswami, S. (2010). Acta Cryst. E66, o424. [PMC free article] [PubMed]
  • Goswami, S., Mukherjee, R. & Ray, J. (2005). Org. Lett.7, 1283–1285. [PubMed]
  • Han, J., Xing, Y., Wang, C., Hou, P., Bai, F., Zeng, X., Zhang, X. & Ge, M. (2009). J. Coord. Chem.62, 745–756.
  • Ishida, M., Naruta, Y. & Tani, F. (2010). Angew. Chem. Int. Ed.49, 91–94. [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography