PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1519.
Published online 2010 May 29. doi:  10.1107/S1600536810019641
PMCID: PMC2979583

Bis(benzyl­sulfan­yl)methane

Abstract

In the title compound, C15H16S2, the structure of the dithioalkyl chain is a helix with an all-cis conformation. The dihedral angle between the mean planes of the terminal aromatic rings is 74.60 (4)°. In the crystal structure, weak C—H(...)π inter­actions contribute to the stabilization of the packing.

Related literature

For the synthesis of the title ligand, see: Cohen et al. (1980 [triangle]). For related structures, see: Li et al. (2005 [triangle]); Tanaka & Ajiki (2005 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1519-scheme1.jpg

Experimental

Crystal data

  • C15H16S2
  • M r = 260.40
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1519-efi1.jpg
  • a = 5.5146 (1) Å
  • b = 12.2628 (3) Å
  • c = 20.0128 (5) Å
  • β = 101.156 (1)°
  • V = 1327.78 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 173 K
  • 0.22 × 0.15 × 0.15 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.922, T max = 0.946
  • 12942 measured reflections
  • 3335 independent reflections
  • 2977 reflections with I > 2σ(I)
  • R int = 0.033

Refinement

  • R[F 2 > 2σ(F 2)] = 0.031
  • wR(F 2) = 0.082
  • S = 1.04
  • 3335 reflections
  • 155 parameters
  • H-atom parameters constrained
  • Δρmax = 0.30 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2006 [triangle]); cell refinement: SAINT (Bruker, 2006 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and DIAMOND (Brandenburg, 1998 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019641/sj5008sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019641/sj5008Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (No. 2010-0016386).

supplementary crystallographic information

Comment

Dithio acetals (RSCH2SR) have received considerable attention in the literature (Li et al., 2005; Tanaka & Ajiki, 2005). We report herein the crystal structure of the title compound. In asymmetric unit, the conformation of dithioalkyl chain is all cis and the dihedral angle between the aromatic rings is 74.60 (4)°. In the crystal structure (Fig. 1), the bond lengths and angles are within normal ranges.

A weak C13—H13···Cg = 2.85 Å interaction (Cg is the centroid of the C1···C6 ring) is observed, Table 1. Weak intermolecular S···S interactions with 3.4732 (6)Å also exist. These intermolecular interactions may be effective in the stabilization of the structure, Fig. 2.

Experimental

The title compound was synthesised according to the published procedure (Cohen et al., 1980) and recrystallized from petroleum ether.

Refinement

All H-atoms were positioned geometrically and refined using a riding model with d(C—H) = 0.95 Å, Uiso =1.2Ueq(C) for aromatic and 0.99 Å, Uiso = 1.2Ueq(C) for the CH2 atoms.

Figures

Fig. 1.
The molecular structure of the title compound, showing displacement ellipsoids drawn at the 50% probability level.
Fig. 2.
Intermolecular C—H···π (red dotted lines) and S···S (green dotted lines) interactions in the title compound. All H atoms except those related to intermolecular interactions have been omitted ...

Crystal data

C15H16S2F(000) = 552
Mr = 260.40Dx = 1.303 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7825 reflections
a = 5.5146 (1) Åθ = 2.7–28.4°
b = 12.2628 (3) ŵ = 0.38 mm1
c = 20.0128 (5) ÅT = 173 K
β = 101.156 (1)°Block, colourless
V = 1327.78 (5) Å30.22 × 0.15 × 0.15 mm
Z = 4

Data collection

Bruker APEXII CCD diffractometer3335 independent reflections
Radiation source: fine-focus sealed tube2977 reflections with I > 2σ(I)
graphiteRint = 0.033
Detector resolution: 10.0 pixels mm-1θmax = 28.4°, θmin = 2.0°
[var phi] and ω scansh = −7→7
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)k = −12→16
Tmin = 0.922, Tmax = 0.946l = −24→26
12942 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.082w = 1/[σ2(Fo2) + (0.0369P)2 + 0.4363P] where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max < 0.001
3335 reflectionsΔρmax = 0.30 e Å3
155 parametersΔρmin = −0.29 e Å3
0 restraintsExtinction correction: SHELXTL (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.030 (2)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.63212 (6)0.46872 (3)0.430321 (16)0.03123 (10)
S20.80471 (6)0.43167 (3)0.294901 (16)0.03327 (11)
C10.7958 (2)0.73297 (11)0.47700 (6)0.0318 (3)
H10.69900.71300.50950.038*
C20.9857 (3)0.80750 (11)0.49456 (7)0.0369 (3)
H21.01970.83770.53910.044*
C31.1262 (3)0.83815 (11)0.44745 (8)0.0376 (3)
H31.25790.88870.45970.045*
C41.0740 (3)0.79496 (11)0.38253 (7)0.0371 (3)
H41.16780.81700.34980.045*
C50.8848 (2)0.71936 (11)0.36495 (6)0.0324 (3)
H50.85080.68970.32030.039*
C60.7447 (2)0.68671 (10)0.41215 (6)0.0269 (2)
C70.5451 (2)0.60237 (11)0.39470 (7)0.0319 (3)
H7A0.49950.59590.34450.038*
H7B0.39700.62760.41140.038*
C80.8761 (2)0.43180 (11)0.38662 (7)0.0303 (3)
H8A0.93440.35790.40190.036*
H8B1.01580.48260.40140.036*
C90.5351 (2)0.34398 (11)0.27868 (6)0.0320 (3)
H9A0.39920.38080.29560.038*
H9B0.48220.33510.22880.038*
C100.5717 (2)0.23235 (10)0.31064 (6)0.0263 (2)
C110.7532 (2)0.16136 (11)0.29690 (6)0.0309 (3)
H110.85980.18390.26750.037*
C120.7799 (2)0.05829 (11)0.32574 (7)0.0327 (3)
H120.90410.01060.31580.039*
C130.6268 (2)0.02439 (11)0.36880 (7)0.0324 (3)
H130.6452−0.04630.38850.039*
C140.4464 (3)0.09429 (11)0.38292 (7)0.0344 (3)
H140.34060.07160.41250.041*
C150.4196 (2)0.19762 (11)0.35389 (7)0.0307 (3)
H150.29510.24510.36390.037*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.03604 (18)0.02830 (18)0.03133 (17)−0.00231 (12)0.01147 (13)−0.00010 (12)
S20.04070 (19)0.02943 (18)0.03283 (17)−0.00462 (13)0.01497 (13)0.00064 (12)
C10.0353 (6)0.0333 (7)0.0270 (6)−0.0013 (5)0.0064 (5)0.0029 (5)
C20.0422 (7)0.0336 (7)0.0322 (6)−0.0033 (6)0.0008 (5)0.0007 (5)
C30.0336 (7)0.0275 (7)0.0505 (8)−0.0018 (5)0.0048 (6)0.0079 (6)
C40.0395 (7)0.0316 (7)0.0445 (7)0.0056 (6)0.0185 (6)0.0113 (6)
C50.0390 (7)0.0293 (6)0.0299 (6)0.0089 (5)0.0093 (5)0.0039 (5)
C60.0270 (6)0.0240 (6)0.0285 (5)0.0060 (5)0.0026 (4)0.0028 (4)
C70.0269 (6)0.0302 (6)0.0368 (6)0.0046 (5)0.0018 (5)−0.0015 (5)
C80.0263 (6)0.0291 (6)0.0349 (6)0.0019 (5)0.0042 (5)0.0005 (5)
C90.0345 (6)0.0295 (6)0.0302 (6)−0.0001 (5)0.0019 (5)0.0020 (5)
C100.0264 (5)0.0257 (6)0.0251 (5)−0.0019 (5)0.0009 (4)−0.0029 (4)
C110.0309 (6)0.0340 (7)0.0288 (6)−0.0006 (5)0.0085 (5)−0.0032 (5)
C120.0320 (6)0.0297 (6)0.0359 (6)0.0043 (5)0.0051 (5)−0.0072 (5)
C130.0355 (6)0.0231 (6)0.0364 (6)−0.0019 (5)0.0011 (5)−0.0015 (5)
C140.0347 (7)0.0305 (7)0.0399 (7)−0.0041 (5)0.0120 (5)0.0012 (5)
C150.0277 (6)0.0281 (6)0.0374 (6)0.0011 (5)0.0087 (5)−0.0027 (5)

Geometric parameters (Å, °)

S1—C81.7988 (13)C7—H7B0.9900
S1—C71.8144 (14)C8—H8A0.9900
S2—C81.8013 (13)C8—H8B0.9900
S2—C91.8125 (14)C9—C101.5079 (17)
C1—C21.3831 (19)C9—H9A0.9900
C1—C61.3942 (17)C9—H9B0.9900
C1—H10.9500C10—C151.3841 (18)
C2—C31.383 (2)C10—C111.3934 (18)
C2—H20.9500C11—C121.3854 (19)
C3—C41.381 (2)C11—H110.9500
C3—H30.9500C12—C131.382 (2)
C4—C51.389 (2)C12—H120.9500
C4—H40.9500C13—C141.383 (2)
C5—C61.3898 (18)C13—H130.9500
C5—H50.9500C14—C151.3899 (19)
C6—C71.5016 (18)C14—H140.9500
C7—H7A0.9900C15—H150.9500
C8—S1—C7101.67 (6)S2—C8—H8A108.0
C8—S2—C9101.13 (6)S1—C8—H8B108.0
C2—C1—C6120.80 (12)S2—C8—H8B108.0
C2—C1—H1119.6H8A—C8—H8B107.2
C6—C1—H1119.6C10—C9—S2115.14 (9)
C1—C2—C3120.19 (13)C10—C9—H9A108.5
C1—C2—H2119.9S2—C9—H9A108.5
C3—C2—H2119.9C10—C9—H9B108.5
C4—C3—C2119.65 (13)S2—C9—H9B108.5
C4—C3—H3120.2H9A—C9—H9B107.5
C2—C3—H3120.2C15—C10—C11118.46 (12)
C3—C4—C5120.26 (13)C15—C10—C9119.80 (11)
C3—C4—H4119.9C11—C10—C9121.73 (11)
C5—C4—H4119.9C12—C11—C10120.68 (12)
C4—C5—C6120.61 (12)C12—C11—H11119.7
C4—C5—H5119.7C10—C11—H11119.7
C6—C5—H5119.7C13—C12—C11120.38 (12)
C5—C6—C1118.46 (12)C13—C12—H12119.8
C5—C6—C7121.28 (11)C11—C12—H12119.8
C1—C6—C7120.25 (12)C12—C13—C14119.43 (12)
C6—C7—S1113.86 (8)C12—C13—H13120.3
C6—C7—H7A108.8C14—C13—H13120.3
S1—C7—H7A108.8C13—C14—C15120.14 (13)
C6—C7—H7B108.8C13—C14—H14119.9
S1—C7—H7B108.8C15—C14—H14119.9
H7A—C7—H7B107.7C10—C15—C14120.91 (12)
S1—C8—S2117.33 (7)C10—C15—H15119.5
S1—C8—H8A108.0C14—C15—H15119.5
C6—C1—C2—C30.7 (2)C9—S2—C8—S1−53.62 (9)
C1—C2—C3—C40.8 (2)C8—S2—C9—C10−55.87 (11)
C2—C3—C4—C5−1.4 (2)S2—C9—C10—C15123.62 (11)
C3—C4—C5—C60.4 (2)S2—C9—C10—C11−57.57 (14)
C4—C5—C6—C11.09 (18)C15—C10—C11—C120.22 (18)
C4—C5—C6—C7−177.97 (12)C9—C10—C11—C12−178.61 (11)
C2—C1—C6—C5−1.67 (19)C10—C11—C12—C13−0.15 (19)
C2—C1—C6—C7177.40 (12)C11—C12—C13—C140.00 (19)
C5—C6—C7—S1103.14 (12)C12—C13—C14—C150.1 (2)
C1—C6—C7—S1−75.91 (14)C11—C10—C15—C14−0.12 (18)
C8—S1—C7—C6−64.96 (10)C9—C10—C15—C14178.72 (12)
C7—S1—C8—S2−56.40 (9)C13—C14—C15—C100.0 (2)

Hydrogen-bond geometry (Å, °)

Cg is the centroid of the C1–C6 ring.
D—H···AD—HH···AD···AD—H···A
C13—H13···Cgi0.952.853.71151

Symmetry codes: (i) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ5008).

References

  • Brandenburg, K. (1998). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2006). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cohen, T., Ruffner, R. J., Shull, D. W., Fogel, E. R. & Falck, J. R. (1980). Org. Synth.59, 202–212.
  • Li, J.-R., Bu, X.-H., Jiao, J., Du, X.-H. & Zhang, R.-H. (2005). Dalton Trans pp. 464–474. [PubMed]
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tanaka, K. & Ajiki, K. (2005). Org. Lett.7, 1537–1539. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography