PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1422.
Published online 2010 May 22. doi:  10.1107/S1600536810018003
PMCID: PMC2979582

3-Butyl-2-phenyl-1,3-thia­zolidine-1,4-dione

Abstract

In the title compound, C13H17NO2S, the thia­zolidine-1,4-dione ring adopts an envelope conformation with the S atom lying 0.631 (4) Å out of the plane formed by the other four ring atoms; the phenyl ring is almost perpendicular [88.74 (8)°] with respect to the ring C—C—N—C atoms and the butyl chain is in a fully extended conformation. In the crystal, a supra­molecular two-dimensional arrangement arises from weak inter­molecular C—H(...)O inter­actions.

Related literature

For related structures, see: Wang et al. (2009 [triangle]); Xu et al. (2009 [triangle]). For synthetic procedures, see: Johnson et al. (1983 [triangle]); Srivastava et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1422-scheme1.jpg

Experimental

Crystal data

  • C13H17NO2S
  • M r = 251.34
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1422-efi1.jpg
  • a = 13.8335 (5) Å
  • b = 8.7461 (3) Å
  • c = 12.3853 (4) Å
  • β = 114.773 (2)°
  • V = 1360.59 (8) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.23 mm−1
  • T = 297 K
  • 0.28 × 0.26 × 0.20 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1997 [triangle]) T min = 0.939, T max = 0.956
  • 15990 measured reflections
  • 3118 independent reflections
  • 2169 reflections with I > 2σ(I)
  • R int = 0.030

Refinement

  • R[F 2 > 2σ(F 2)] = 0.050
  • wR(F 2) = 0.159
  • S = 1.14
  • 3118 reflections
  • 155 parameters
  • 6 restraints
  • H-atom parameters constrained
  • Δρmax = 0.34 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810018003/pv2278sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018003/pv2278Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Foundation of Henan Polytechnic University for Doctor Teachers (B2010-65), and the authors thank Dr L. Yang, Dr D. Zhao and Dr Z. Z. Zhang for their support of the data collection and analysis.

supplementary crystallographic information

Comment

As a part of our programme studying the new applications of cyclic sulfoxide derivatives in medicne (Wang, et al., 2009; Xu, et al., 2009), we report herein the crystal structure of the title compounds.

The molecular structure of the title compound is shown in Fig. 1. The thiazolidin-4-one ring adopts an envelope conformation with S lying 0.631 (4) Å out of the plane formed by the rest of the ring atoms; the phenyl ring is oriented at right angles (88.74 (8)°) with respect to the ring (C2/C3/N1/C1) atoms. The butyl chain is in a fully extended conformation. The crystal packing (Fig. 2) consists of a two-dimensional network in the a-c-plane generated by intermolecular interactions of the weak C—H···O hydrogen bonds.

Experimental

All reagents were of analytical grade. The title compound was prepared according to literature methods (Srivastava et al., 2002; Johnson et al., 1983). It was characterized by recording its infrared spectra and elemental analyses. Single crystals of the title compound were obtained by slow evaporation of its chloroform solution at room temperature.

Refinement

All H atoms bonded to C atoms were calculated in idealized position with C—H = 0.93-0.98 Å and refined in riding mode on their parent atoms with Uiso(H) values of 1.2Ueq(C).

Figures

Fig. 1.
The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A view of the unit cell packing of the title compound down the a-axis showing hydrogen bonds as dashed lines.

Crystal data

C13H17NO2SF(000) = 536
Mr = 251.34Dx = 1.227 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5947 reflections
a = 13.8335 (5) Åθ = 2.8–25.9°
b = 8.7461 (3) ŵ = 0.23 mm1
c = 12.3853 (4) ÅT = 297 K
β = 114.773 (2)°Block, yellow
V = 1360.59 (8) Å30.28 × 0.26 × 0.20 mm
Z = 4

Data collection

Bruker APEXII CCD area-detector diffractometer3118 independent reflections
Radiation source: fine-focus sealed tube2169 reflections with I > 2σ(I)
graphiteRint = 0.030
[var phi] and ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1997)h = −17→12
Tmin = 0.939, Tmax = 0.956k = −11→11
15990 measured reflectionsl = −15→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H-atom parameters constrained
S = 1.14w = 1/[σ2(Fo2) + (0.0833P)2 + 0.1042P] where P = (Fo2 + 2Fc2)/3
3118 reflections(Δ/σ)max < 0.001
155 parametersΔρmax = 0.34 e Å3
6 restraintsΔρmin = −0.28 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N10.25227 (13)0.66161 (18)0.36775 (14)0.0437 (4)
O10.04410 (14)0.84045 (17)0.19284 (19)0.0788 (6)
O20.24851 (16)0.7278 (2)0.54296 (16)0.0820 (6)
S10.04960 (4)0.67497 (6)0.22013 (5)0.0522 (2)
C10.20313 (18)0.6887 (2)0.4393 (2)0.0514 (5)
C20.08545 (18)0.6614 (2)0.3755 (2)0.0553 (6)
H2A0.04690.73710.39930.066*
H2B0.06780.56080.39490.066*
C30.18626 (14)0.6127 (2)0.24789 (16)0.0410 (5)
H30.20850.66790.19330.049*
C40.18891 (14)0.4445 (2)0.22558 (16)0.0393 (4)
C50.15706 (17)0.3929 (2)0.10953 (19)0.0525 (5)
H50.13600.46310.04740.063*
C60.1564 (2)0.2395 (3)0.0856 (2)0.0650 (7)
H60.13460.20670.00750.078*
C70.1875 (2)0.1350 (3)0.1756 (3)0.0692 (7)
H70.18750.03130.15890.083*
C80.2186 (2)0.1831 (3)0.2906 (3)0.0677 (7)
H80.23870.11180.35180.081*
C90.22036 (17)0.3375 (2)0.3161 (2)0.0531 (6)
H90.24280.36940.39450.064*
C100.36729 (17)0.6710 (3)0.4092 (2)0.0577 (6)
H10A0.39320.57610.39060.069*
H10B0.39960.68300.49490.069*
C110.4012 (2)0.8007 (3)0.3546 (3)0.0734 (7)
H11A0.37440.89540.37260.088*
H11B0.36890.78820.26890.088*
C120.5200 (2)0.8135 (4)0.3968 (3)0.1025 (11)
H12A0.55210.83110.48200.123*
H12B0.54730.71730.38210.123*
C130.5527 (3)0.9381 (6)0.3380 (4)0.1532 (17)
H13A0.53280.91220.25610.184*
H13B0.62840.95160.37730.184*
H13C0.51791.03140.34250.184*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N10.0431 (9)0.0507 (10)0.0389 (9)−0.0063 (7)0.0189 (7)−0.0076 (7)
O10.0751 (12)0.0415 (10)0.1114 (15)0.0132 (7)0.0307 (11)0.0173 (9)
O20.0877 (14)0.1101 (16)0.0556 (11)−0.0193 (11)0.0372 (10)−0.0332 (10)
S10.0453 (3)0.0400 (3)0.0641 (4)0.0035 (2)0.0156 (3)0.0018 (2)
C10.0614 (14)0.0500 (12)0.0506 (14)−0.0080 (10)0.0312 (11)−0.0118 (10)
C20.0566 (13)0.0484 (12)0.0733 (16)−0.0076 (9)0.0395 (12)−0.0104 (10)
C30.0437 (10)0.0447 (10)0.0367 (11)−0.0019 (8)0.0190 (9)0.0008 (8)
C40.0381 (10)0.0426 (10)0.0403 (11)0.0019 (8)0.0195 (8)−0.0010 (8)
C50.0572 (13)0.0567 (13)0.0464 (13)0.0022 (10)0.0243 (10)−0.0042 (10)
C60.0661 (16)0.0669 (16)0.0636 (16)−0.0004 (12)0.0288 (13)−0.0227 (13)
C70.0654 (15)0.0489 (13)0.094 (2)0.0026 (11)0.0339 (15)−0.0165 (14)
C80.0723 (17)0.0492 (14)0.083 (2)0.0130 (11)0.0336 (14)0.0151 (12)
C90.0617 (14)0.0517 (12)0.0472 (13)0.0068 (10)0.0241 (11)0.0037 (9)
C100.0464 (12)0.0706 (15)0.0527 (14)−0.0020 (10)0.0174 (10)−0.0063 (11)
C110.0514 (15)0.0891 (18)0.0734 (18)−0.0103 (13)0.0200 (13)0.0048 (14)
C120.0567 (17)0.137 (3)0.113 (3)−0.0209 (17)0.0347 (18)−0.005 (2)
C130.127 (2)0.179 (3)0.168 (3)−0.041 (2)0.076 (2)0.009 (2)

Geometric parameters (Å, °)

N1—C11.345 (2)C7—C81.370 (4)
N1—C31.444 (2)C7—H70.9300
N1—C101.455 (3)C8—C91.385 (3)
O1—S11.4809 (16)C8—H80.9300
O2—C11.218 (3)C9—H90.9300
S1—C21.779 (2)C10—C111.493 (3)
S1—C31.8559 (18)C10—H10A0.9700
C1—C21.501 (3)C10—H10B0.9700
C2—H2A0.9700C11—C121.507 (4)
C2—H2B0.9700C11—H11A0.9700
C3—C41.500 (3)C11—H11B0.9700
C3—H30.9800C12—C131.482 (5)
C4—C91.383 (3)C12—H12A0.9700
C4—C51.390 (3)C12—H12B0.9700
C5—C61.374 (3)C13—H13A0.9600
C5—H50.9300C13—H13B0.9600
C6—C71.364 (4)C13—H13C0.9600
C6—H60.9300
C1—N1—C3116.95 (17)C8—C7—H7120.1
C1—N1—C10122.52 (18)C7—C8—C9120.3 (2)
C3—N1—C10120.42 (15)C7—C8—H8119.8
O1—S1—C2106.05 (11)C9—C8—H8119.8
O1—S1—C3106.27 (10)C8—C9—C4120.3 (2)
C2—S1—C388.82 (9)C8—C9—H9119.8
O2—C1—N1124.4 (2)C4—C9—H9119.8
O2—C1—C2124.46 (19)N1—C10—C11112.81 (18)
N1—C1—C2111.17 (19)N1—C10—H10A109.0
C1—C2—S1107.95 (14)C11—C10—H10A109.0
C1—C2—H2A110.1N1—C10—H10B109.0
S1—C2—H2A110.1C11—C10—H10B109.0
C1—C2—H2B110.1H10A—C10—H10B107.8
S1—C2—H2B110.1C10—C11—C12113.8 (2)
H2A—C2—H2B108.4C10—C11—H11A108.8
N1—C3—C4115.24 (16)C12—C11—H11A108.8
N1—C3—S1105.05 (12)C10—C11—H11B108.8
C4—C3—S1110.82 (12)C12—C11—H11B108.8
N1—C3—H3108.5H11A—C11—H11B107.7
C4—C3—H3108.5C13—C12—C11113.4 (3)
S1—C3—H3108.5C13—C12—H12A108.9
C9—C4—C5118.34 (19)C11—C12—H12A108.9
C9—C4—C3122.52 (18)C13—C12—H12B108.9
C5—C4—C3119.13 (17)C11—C12—H12B108.9
C6—C5—C4120.7 (2)H12A—C12—H12B107.7
C6—C5—H5119.6C12—C13—H13A109.5
C4—C5—H5119.6C12—C13—H13B109.5
C7—C6—C5120.5 (2)H13A—C13—H13B109.5
C7—C6—H6119.8C12—C13—H13C109.5
C5—C6—H6119.8H13A—C13—H13C109.5
C6—C7—C8119.8 (2)H13B—C13—H13C109.5
C6—C7—H7120.1
C3—N1—C1—O2178.6 (2)N1—C3—C4—C921.3 (3)
C10—N1—C1—O22.4 (3)S1—C3—C4—C9−97.9 (2)
C3—N1—C1—C2−0.3 (2)N1—C3—C4—C5−159.80 (16)
C10—N1—C1—C2−176.47 (18)S1—C3—C4—C581.10 (18)
O2—C1—C2—S1159.4 (2)C9—C4—C5—C60.3 (3)
N1—C1—C2—S1−21.8 (2)C3—C4—C5—C6−178.67 (18)
O1—S1—C2—C1−78.65 (16)C4—C5—C6—C7−0.2 (3)
C3—S1—C2—C127.94 (15)C5—C6—C7—C80.6 (4)
C1—N1—C3—C4−101.4 (2)C6—C7—C8—C9−1.0 (4)
C10—N1—C3—C474.9 (2)C7—C8—C9—C41.1 (3)
C1—N1—C3—S120.9 (2)C5—C4—C9—C8−0.7 (3)
C10—N1—C3—S1−162.82 (15)C3—C4—C9—C8178.21 (18)
O1—S1—C3—N178.93 (14)C1—N1—C10—C11−112.5 (2)
C2—S1—C3—N1−27.45 (13)C3—N1—C10—C1171.4 (2)
O1—S1—C3—C4−155.99 (14)N1—C10—C11—C12179.6 (2)
C2—S1—C3—C497.63 (14)C10—C11—C12—C13177.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2B···O1i0.972.433.246 (3)142
C3—H3···O2ii0.982.343.311 (3)172
C9—H9···N10.932.592.899 (2)100
C10—H10B···O20.972.432.824 (3)104
C11—H11B···O2ii0.972.593.548 (4)169

Symmetry codes: (i) −x, y−1/2, −z+1/2; (ii) x, −y+3/2, z−1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2278).

References

  • Bruker (2001). SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2003). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Johnson, M. R., Dong, M., Fazio, M. J., Ward, D. L. & Sousa, L. R. (1983). J. Org. Chem.48, 494–499.
  • Sheldrick, G. M. (1997). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Srivastava, T., Haq, W. & Katti, S. B. (2002). Tetrahedron, 58, 7619–7624.
  • Wang, Q., Yang, L., Xu, Z. & Sun, Y. (2009). Acta Cryst. E65, o1978. [PMC free article] [PubMed]
  • Xu, Z., Sun, Y., Yang, L. & Wang, Q. (2009). Acta Cryst. E65, o1799. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography