PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1435.
Published online 2010 May 22. doi:  10.1107/S1600536810018684
PMCID: PMC2979581

2,6-Bis(2,4-dimethyl­benzyl­idene)cyclo­hexa­none

Abstract

In the crystal structure of the title compound, C24H6O, the mol­ecule exhibits point symmetry m but the mirror plane is not utilized as part of the space-group symmetry. The structure contains face-to-face inter­actions between the 2,4-dimethyl­benzyl­idene substituents in which the methyl groups lie directly above the centroids of adjacent benzene rings.

Related literature

For related structures, see: Guo et al. (2008 [triangle]); Jia et al. (1989 [triangle]); Liu (2009 [triangle]); Ompraba et al. (2003 [triangle]); Shi et al. (2008 [triangle]); Zhang et al. (2005 [triangle]); Zhou (2007 [triangle]). For quanti­fication of the mol­ecular point symmetry, see: Pilati & Forni (1998 [triangle], 2000 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1435-scheme1.jpg

Experimental

Crystal data

  • C24H26O
  • M r = 330.45
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1435-efi1.jpg
  • a = 6.9784 (4) Å
  • b = 19.2540 (12) Å
  • c = 14.2829 (10) Å
  • β = 102.179 (3)°
  • V = 1875.9 (2) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.07 mm−1
  • T = 120 K
  • 0.60 × 0.20 × 0.20 mm

Data collection

  • Bruker–Nonius X8 APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2003 [triangle]) T min = 0.895, T max = 0.986
  • 32106 measured reflections
  • 3565 independent reflections
  • 2399 reflections with I > 2σ(I)
  • R int = 0.042

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.113
  • S = 1.08
  • 3565 reflections
  • 230 parameters
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.22 e Å−3

Data collection: APEX2 (Bruker, 2004 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
C—H(...)π interactions (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018684/jh2159sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018684/jh2159Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We are grateful to the Danish Natural Sciences Research Council for funding (grant No. 272-08-0237).

supplementary crystallographic information

Comment

We were interested in the crystal structure of 2,6-bis(2,4-dichlorobenzylidene)cyclohexanone (Guo et al., 2008) because we have found that it exhibits a relatively large change in structure on cooling from room temperature to 100 K (Solanko & Bond, unpublished results). We synthesised the analogous tetra-methyl-substituted compound to examine whether it might form a similar structure and display similar behaviour. It does not.

We note that in the publication of Guo et al. (2008), the chloro compound is stated to be synthesised by reaction of 2,4-dichlorobenzophenone with cyclohexanone. It seems likely that this should be 2,4-dichlorobenzaldehyde with cyclohexanone, as described here in the Experimental section.

The molecular point symmetry m referred to in the Abstract was quantified using the program SYMMOL (Pilati & Forni, 1998, 2000): the rms deviation of the molecule from its m symmetrised counterpart is 0.055 Å.

Experimental

2,4-Dimethylbenzaldehyde (2.8 ml, 0.02 mol), cyclohexanone (1.0 ml, 0.01 mol) and 30% NaOH(aq) (1 ml) were stirred in ethanol (3 ml) at room temperature for 6 h. The yellow product was filtered and washed using EtOH (3 × 2 ml). Crystals were obtained by slow evaporation from acetone under ambient conditions.

Refinement

H atoms bound to C atoms were positioned geometrically and allowed to ride during subsequent refinement with C—H = 0.95–0.98 Å, and with Uiso(H) = 1.2 or 1.5 Ueq(C). Methyl groups were allowed to rotate about their local threefold axes.

Figures

Fig. 1.
Molecular unit showing displacement ellipsoids at 50% probability. H atoms are shown as spheres of arbitrary radius.
Fig. 2.
Face-to-face interactions between the 2,4-dimethylbenzylidene substituents, with C(methyl)···centroid interactions highlighted.

Crystal data

C24H26OF(000) = 712
Mr = 330.45Dx = 1.170 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5996 reflections
a = 6.9784 (4) Åθ = 2.6–24.5°
b = 19.2540 (12) ŵ = 0.07 mm1
c = 14.2829 (10) ÅT = 120 K
β = 102.179 (3)°Needle, yellow
V = 1875.9 (2) Å30.60 × 0.20 × 0.20 mm
Z = 4

Data collection

Bruker–Nonius X8 APEXII CCD diffractometer3565 independent reflections
Radiation source: fine-focus sealed tube2399 reflections with I > 2σ(I)
graphiteRint = 0.042
ω and [var phi] scansθmax = 25.8°, θmin = 3.6°
Absorption correction: multi-scan (SADABS; Bruker, 2003)h = −8→8
Tmin = 0.895, Tmax = 0.986k = −19→23
32106 measured reflectionsl = −17→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0604P)2 + 0.133P] where P = (Fo2 + 2Fc2)/3
3565 reflections(Δ/σ)max < 0.001
230 parametersΔρmax = 0.21 e Å3
0 restraintsΔρmin = −0.22 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.0853 (2)0.39396 (5)0.26683 (9)0.0545 (4)
C10.1796 (2)0.39689 (7)0.20350 (11)0.0297 (4)
C20.2281 (2)0.46589 (7)0.16524 (10)0.0243 (3)
C30.3539 (2)0.46722 (7)0.09156 (10)0.0250 (4)
H3A0.43240.51050.09890.030*
H3B0.26870.46730.02670.030*
C40.4907 (2)0.40496 (7)0.10168 (11)0.0274 (4)
H4A0.57270.40740.05310.033*
H4B0.57850.40510.16590.033*
C50.3697 (2)0.33903 (7)0.08813 (10)0.0246 (4)
H5A0.28360.33910.02340.030*
H5B0.45830.29850.09240.030*
C60.24585 (19)0.33209 (7)0.16204 (10)0.0226 (3)
C100.1637 (2)0.52272 (7)0.20284 (10)0.0243 (4)
H10A0.09270.51490.25180.029*
C110.18876 (19)0.59566 (7)0.17793 (10)0.0205 (3)
C120.23238 (18)0.64565 (7)0.25081 (10)0.0207 (3)
C130.25309 (18)0.71416 (7)0.22573 (10)0.0215 (3)
H13A0.28400.74770.27540.026*
C140.23096 (18)0.73622 (7)0.13169 (10)0.0227 (3)
C150.18354 (19)0.68668 (7)0.05996 (10)0.0225 (3)
H15A0.16460.7003−0.00530.027*
C160.16363 (19)0.61763 (7)0.08281 (10)0.0217 (3)
H16A0.13220.58440.03280.026*
C170.2599 (2)0.62591 (8)0.35419 (10)0.0271 (4)
H17A0.31400.66550.39440.041*
H17B0.35050.58650.36770.041*
H17C0.13320.61280.36820.041*
C180.2627 (2)0.81108 (8)0.11040 (11)0.0330 (4)
H18A0.20400.84060.15270.049*
H18B0.20120.82110.04350.049*
H18C0.40360.82050.12100.049*
C200.19241 (19)0.27140 (7)0.19475 (10)0.0225 (3)
H20A0.12650.27430.24640.027*
C210.22247 (18)0.20107 (7)0.16113 (9)0.0198 (3)
C220.25798 (18)0.14544 (7)0.22633 (10)0.0199 (3)
C230.27183 (19)0.07907 (7)0.19172 (10)0.0247 (4)
H23A0.29700.04170.23610.030*
C240.2504 (2)0.06452 (8)0.09459 (11)0.0278 (4)
C250.2156 (2)0.11958 (8)0.03073 (11)0.0268 (4)
H25A0.20040.1113−0.03600.032*
C260.20303 (19)0.18648 (8)0.06376 (10)0.0239 (4)
H26A0.18050.22360.01900.029*
C270.28382 (19)0.15735 (8)0.33191 (9)0.0255 (4)
H27A0.30230.11270.36550.038*
H27B0.16710.18040.34500.038*
H27C0.39900.18680.35430.038*
C280.2652 (3)−0.00880 (8)0.06076 (13)0.0441 (5)
H28A0.1693−0.03790.08350.066*
H28B0.3975−0.02660.08610.066*
H28C0.2384−0.0097−0.00940.066*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0908 (10)0.0269 (7)0.0671 (9)−0.0005 (6)0.0645 (8)0.0014 (6)
C10.0368 (9)0.0268 (10)0.0313 (9)−0.0015 (7)0.0202 (7)0.0008 (7)
C20.0257 (8)0.0240 (9)0.0256 (8)0.0008 (6)0.0105 (6)0.0022 (7)
C30.0293 (8)0.0223 (9)0.0276 (8)−0.0005 (6)0.0154 (6)0.0029 (6)
C40.0286 (8)0.0266 (9)0.0316 (9)0.0009 (7)0.0170 (7)0.0030 (7)
C50.0292 (8)0.0232 (9)0.0242 (8)0.0044 (6)0.0117 (6)0.0032 (6)
C60.0247 (8)0.0225 (9)0.0220 (8)0.0002 (6)0.0080 (6)0.0012 (6)
C100.0251 (8)0.0258 (9)0.0255 (8)0.0013 (6)0.0130 (6)0.0022 (7)
C110.0153 (7)0.0233 (9)0.0251 (9)0.0033 (6)0.0095 (6)0.0033 (7)
C120.0127 (7)0.0269 (9)0.0231 (8)0.0042 (6)0.0055 (6)0.0022 (7)
C130.0171 (7)0.0232 (9)0.0237 (8)0.0020 (6)0.0034 (6)−0.0026 (6)
C140.0171 (7)0.0229 (8)0.0283 (9)0.0038 (6)0.0056 (6)0.0047 (7)
C150.0203 (7)0.0262 (9)0.0217 (8)0.0058 (6)0.0062 (6)0.0059 (7)
C160.0195 (7)0.0249 (9)0.0218 (8)0.0027 (6)0.0070 (6)−0.0024 (6)
C170.0236 (8)0.0331 (9)0.0252 (8)0.0007 (7)0.0065 (6)0.0032 (7)
C180.0369 (9)0.0268 (9)0.0350 (10)0.0000 (7)0.0071 (7)0.0045 (7)
C200.0233 (7)0.0252 (9)0.0201 (8)−0.0003 (6)0.0071 (6)0.0001 (6)
C210.0162 (7)0.0220 (8)0.0218 (8)−0.0019 (6)0.0051 (6)−0.0016 (6)
C220.0115 (7)0.0241 (9)0.0245 (8)−0.0026 (6)0.0044 (6)0.0000 (7)
C230.0170 (7)0.0222 (9)0.0353 (10)−0.0009 (6)0.0060 (6)0.0031 (7)
C240.0190 (7)0.0254 (9)0.0401 (10)−0.0016 (6)0.0089 (7)−0.0071 (8)
C250.0233 (8)0.0324 (10)0.0243 (8)−0.0026 (7)0.0044 (6)−0.0078 (7)
C260.0212 (7)0.0263 (9)0.0241 (9)−0.0010 (6)0.0048 (6)0.0003 (7)
C270.0223 (7)0.0296 (9)0.0248 (9)−0.0024 (7)0.0049 (6)0.0038 (7)
C280.0447 (10)0.0295 (10)0.0590 (12)−0.0009 (8)0.0129 (9)−0.0138 (9)

Geometric parameters (Å, °)

O1—C11.2272 (17)C16—H16A0.950
C1—C61.4954 (19)C17—H17A0.980
C1—C21.5022 (19)C17—H17B0.980
C2—C101.3378 (19)C17—H17C0.980
C2—C31.5062 (19)C18—H18A0.980
C3—C41.5198 (19)C18—H18B0.980
C3—H3A0.990C18—H18C0.980
C3—H3B0.990C20—C211.4665 (19)
C4—C51.5140 (19)C20—H20A0.950
C4—H4A0.990C21—C261.3970 (19)
C4—H4B0.990C21—C221.4067 (19)
C5—C61.5049 (19)C22—C231.381 (2)
C5—H5A0.990C22—C271.4981 (19)
C5—H5B0.990C23—C241.392 (2)
C6—C201.3402 (18)C23—H23A0.950
C10—C111.4683 (19)C24—C251.386 (2)
C10—H10A0.950C24—C281.503 (2)
C11—C161.3983 (19)C25—C261.381 (2)
C11—C121.4033 (19)C25—H25A0.950
C12—C131.3824 (19)C26—H26A0.950
C12—C171.4973 (19)C27—H27A0.980
C13—C141.3858 (19)C27—H27B0.980
C13—H13A0.950C27—H27C0.980
C14—C151.3878 (19)C28—H28A0.980
C14—C181.499 (2)C28—H28B0.980
C15—C161.3829 (19)C28—H28C0.980
C15—H15A0.950
O1—C1—C6120.80 (13)C11—C16—H16A119.3
O1—C1—C2120.39 (13)C12—C17—H17A109.5
C6—C1—C2118.80 (12)C12—C17—H17B109.5
C10—C2—C1117.17 (12)H17A—C17—H17B109.5
C10—C2—C3124.17 (12)C12—C17—H17C109.5
C1—C2—C3118.58 (12)H17A—C17—H17C109.5
C2—C3—C4111.52 (11)H17B—C17—H17C109.5
C2—C3—H3A109.3C14—C18—H18A109.5
C4—C3—H3A109.3C14—C18—H18B109.5
C2—C3—H3B109.3H18A—C18—H18B109.5
C4—C3—H3B109.3C14—C18—H18C109.5
H3A—C3—H3B108.0H18A—C18—H18C109.5
C5—C4—C3109.10 (12)H18B—C18—H18C109.5
C5—C4—H4A109.9C6—C20—C21128.42 (13)
C3—C4—H4A109.9C6—C20—H20A115.8
C5—C4—H4B109.9C21—C20—H20A115.8
C3—C4—H4B109.9C26—C21—C22118.20 (13)
H4A—C4—H4B108.3C26—C21—C20121.40 (12)
C6—C5—C4111.84 (11)C22—C21—C20120.25 (12)
C6—C5—H5A109.2C23—C22—C21118.92 (13)
C4—C5—H5A109.2C23—C22—C27119.96 (13)
C6—C5—H5B109.2C21—C22—C27121.12 (12)
C4—C5—H5B109.2C22—C23—C24122.82 (13)
H5A—C5—H5B107.9C22—C23—H23A118.6
C20—C6—C1117.23 (12)C24—C23—H23A118.6
C20—C6—C5124.42 (12)C25—C24—C23117.97 (13)
C1—C6—C5118.35 (11)C25—C24—C28121.41 (14)
C2—C10—C11128.14 (13)C23—C24—C28120.61 (14)
C2—C10—H10A115.9C26—C25—C24120.23 (14)
C11—C10—H10A115.9C26—C25—H25A119.9
C16—C11—C12118.44 (12)C24—C25—H25A119.9
C16—C11—C10121.86 (13)C25—C26—C21121.85 (13)
C12—C11—C10119.65 (12)C25—C26—H26A119.1
C13—C12—C11118.72 (12)C21—C26—H26A119.1
C13—C12—C17119.94 (13)C22—C27—H27A109.5
C11—C12—C17121.33 (12)C22—C27—H27B109.5
C12—C13—C14123.18 (13)H27A—C27—H27B109.5
C12—C13—H13A118.4C22—C27—H27C109.5
C14—C13—H13A118.4H27A—C27—H27C109.5
C13—C14—C15117.73 (13)H27B—C27—H27C109.5
C13—C14—C18120.01 (13)C24—C28—H28A109.5
C15—C14—C18122.24 (13)C24—C28—H28B109.5
C16—C15—C14120.44 (13)H28A—C28—H28B109.5
C16—C15—H15A119.8C24—C28—H28C109.5
C14—C15—H15A119.8H28A—C28—H28C109.5
C15—C16—C11121.47 (13)H28B—C28—H28C109.5
C15—C16—H16A119.3
O1—C1—C2—C10−0.3 (2)C12—C13—C14—C150.74 (19)
C6—C1—C2—C10178.86 (13)C12—C13—C14—C18−177.85 (12)
O1—C1—C2—C3176.57 (15)C13—C14—C15—C16−1.32 (19)
C6—C1—C2—C3−4.3 (2)C18—C14—C15—C16177.24 (13)
C10—C2—C3—C4148.79 (14)C14—C15—C16—C110.5 (2)
C1—C2—C3—C4−27.81 (19)C12—C11—C16—C150.91 (19)
C2—C3—C4—C560.25 (16)C10—C11—C16—C15178.63 (12)
C3—C4—C5—C6−60.88 (15)C1—C6—C20—C21174.29 (13)
O1—C1—C6—C202.1 (2)C5—C6—C20—C21−6.7 (2)
C2—C1—C6—C20−177.03 (13)C6—C20—C21—C26−39.0 (2)
O1—C1—C6—C5−176.96 (15)C6—C20—C21—C22145.61 (14)
C2—C1—C6—C53.9 (2)C26—C21—C22—C23−0.09 (18)
C4—C5—C6—C20−150.24 (14)C20—C21—C22—C23175.44 (11)
C4—C5—C6—C128.73 (18)C26—C21—C22—C27178.95 (12)
C1—C2—C10—C11−179.33 (13)C20—C21—C22—C27−5.52 (19)
C3—C2—C10—C114.0 (2)C21—C22—C23—C24−0.58 (19)
C2—C10—C11—C1643.5 (2)C27—C22—C23—C24−179.63 (12)
C2—C10—C11—C12−138.83 (15)C22—C23—C24—C250.6 (2)
C16—C11—C12—C13−1.47 (18)C22—C23—C24—C28−179.46 (13)
C10—C11—C12—C13−179.23 (12)C23—C24—C25—C260.0 (2)
C16—C11—C12—C17179.60 (12)C28—C24—C25—C26−179.90 (13)
C10—C11—C12—C171.84 (19)C24—C25—C26—C21−0.7 (2)
C11—C12—C13—C140.66 (19)C22—C21—C26—C250.71 (19)
C17—C12—C13—C14179.61 (12)C20—C21—C26—C25−174.76 (12)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C21–C26 and C11–C16 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C17—H17B···Cg1i0.983.003.532 (1)154
C17—H17C···Cg1ii0.982.623.469 (1)111
C27—H27B···Cg2iii0.982.643.486 (1)145
C27—H27C···Cg2iv0.982.803.510 (1)130

Symmetry codes: (i) −x, y+1/2, −z+1/2; (ii) −x+1, y+1/2, −z+1/2; (iii) −x, y−1/2, −z+1/2; (iv) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2159).

References

  • Bruker (2003). SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2004). APEX2 Bruker AXS Inc., Madison, Wisconsin, USA.
  • Guo, H.-M., Liu, L. & Jian, F.-F. (2008). Acta Cryst. E64, o1626. [PMC free article] [PubMed]
  • Jia, Z., Quail, J. W., Arora, V. K. & Dimmock, J. R. (1989). Acta Cryst. C45, 285–289.
  • Liu, D. (2009). Acta Cryst. E65, o694. [PMC free article] [PubMed]
  • Ompraba, G., Rafi, Z. A., Yogavel, M., Velmurugan, D., Sekar, K., Karthikeyan, E., Perumal, S., Choudhury, A. R. & Guru Row, T. N. (2003). Cryst. Res. Technol.38, 822–828.
  • Pilati, T. & Forni, A. (1998). J. Appl. Cryst.31, 503–504.
  • Pilati, T. & Forni, A. (2000). J. Appl. Cryst.33, 417.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shi, X., Li, S. & Liu, Z. (2008). Acta Cryst. E64, o2199. [PMC free article] [PubMed]
  • Zhang, L., Wang, S., Sheng, E. & Zhou, S. (2005). Green Chem.7, 683–686.
  • Zhou, L.-Y. (2007). Acta Cryst. E63, o3113.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography