PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m669–m670.
Published online 2010 May 19. doi:  10.1107/S1600536810017472
PMCID: PMC2979578

Bis{2-[2-(isopropyl­ammonio)ethyl­imino­meth­yl]-5-methoxy­phenolato}copper(II) bis­(perchlorate)

Abstract

In the title compound, [Cu(C13H20N2O2)2](ClO4)2, the CuII atom in the complex dication is chelated by two phenolate O atoms and two imine N atoms from two zwitterionic 2-[2-(isopropyl­ammonio)ethyl­imino­meth­yl]-5-methoxy­phenolate ligands, forming a distorted square-planar geometry. One of the perchlorate anions is disordered over two sites with occupancies of 0.611 (15) and 0.389 (15). Intra­molecular N—H(...)O hydrogen bonds are observed in the complex dication. In the crystal structure, the perchlorate anions are linked to complex dications by inter­molecular N—H(...)O hydrogen bonds.

Related literature

For general background to CuII complexes, see: Collinson & Fenton (1996 [triangle]); Hossain et al. (1996 [triangle]); Tarafder et al. (2002 [triangle]); Musie et al. (2003 [triangle]); García-Raso et al. (2003 [triangle]); Reddy et al. (2000 [triangle]); Ray et al. (2003 [triangle]); Arnold et al. (2003 [triangle]); Raptopoulou et al. (1998 [triangle]). For related structures, see: Wang et al. (2009a [triangle],b [triangle], 2010 [triangle]); Wang (2009 [triangle]). For bond lengths and angles in related CuII complexes, see: Hebbachi & Benali-Cherif (2005 [triangle]); Butcher et al. (2003 [triangle]); Elmali et al. (2000 [triangle]); Warda et al. (1997 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m669-scheme1.jpg

Experimental

Crystal data

  • [Cu(C13H20N2O2)2](ClO4)2
  • M r = 735.06
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m669-efi1.jpg
  • a = 17.4415 (13) Å
  • b = 14.009 (1) Å
  • c = 26.350 (2) Å
  • V = 6438.2 (8) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.91 mm−1
  • T = 298 K
  • 0.20 × 0.18 × 0.17 mm

Data collection

  • Bruker SMART CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.839, T max = 0.861
  • 36964 measured reflections
  • 7004 independent reflections
  • 3260 reflections with I > 2σ(I)
  • R int = 0.117

Refinement

  • R[F 2 > 2σ(F 2)] = 0.059
  • wR(F 2) = 0.182
  • S = 1.01
  • 7004 reflections
  • 449 parameters
  • 94 restraints
  • H-atom parameters constrained
  • Δρmax = 0.67 e Å−3
  • Δρmin = −0.39 e Å−3

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017472/ci5083sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017472/ci5083Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by the Natural Science Foundation of China (grant No. 30771696), the Zhejiang Provincial Natural Science Foundation of China (grant No. Y407318), and the Science and Technology Plan of Huzhou (grant No. 2009 GG06).

supplementary crystallographic information

Comment

In recent years, copper(II) complexes have received much attention for their interesting biological activities and versatile structures (Collinson & Fenton, 1996; Hossain et al., 1996; Tarafder et al., 2002; Musie et al., 2003; García-Raso et al., 2003). Considerable effort has been made to construct a variety of copper(II) complexes in an attempt to model the physical and chemical behaviour of copper-containing metalloenzymes (Reddy et al., 2000). The peculiarity of copper lies in its ability to form complexes with coordination number four, five, and six (Ray et al., 2003; Arnold et al., 2003; Raptopoulou et al., 1998). As part of our investigations into novel urease inhibitors (Wang et al., 2009a,b,2010; Wang, 2009), the title compound, a new CuII complex, has been synthesized, and its crystal structure is reported here.

The asymmetric units contains one mononuclear copper(II) complex dication, and two perchlorate anions (Fig. 1). The CuII atom in the dication is chelated by two phenolate O atoms and two imine N atoms from two 2-[(2-isopropylammonioethylimino)methyl]-5-methoxyphenolate ligands, forming a square-planar geometry. The coordinate bond lengths (Table 1) and angles are typical and are comparable with those observed in other related copper(II) complexes (Hebbachi & Benali-Cherif, 2005; Butcher et al., 2003; Elmali et al., 2000; Warda et al., 1997). There are two intramolecular N—H···O hydrogen bonds in the complex dication.

In the crystal structure, the perchlorate anions are linked to the complex dications by intermolecular N—H···O hydrogen bonds (Table 2 and Fig. 2).

Experimental

4-Methoxysalicylaldehyde (1.0 mmol, 152 mg), N-isopropyl-1,2-diaminoethane (1.0 mmol, 102 mg) and Cu(ClO4)2.6H2O (1.0 mmol, 370 mg) were dissolved in methanol (80 ml). The mixture was stirred at room temperature for about 1 h to give a blue solution. After keeping the solution in air for a few days, blue block-like crystals were formed.

Refinement

H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with C–H distances of 0.93–0.98 Å, N—H distances of 0.90 Å, and with Uiso(H) set at 1.2Ueq(C,N) and 1.5Ueq(Cmethyl). One of the perchlorate anions is disordered over two distinct sites with occupancies of 0.611 (15) and 0.389 (15). The positional and Uij parameters of disordered atoms Cl2 and Cl2' were constrained to be the same. The Cl···O and O···O distances in the disorder components were restrained to 1.42 (1) and 2.35 (2) Å, respectively. The Uij parameters of disordered O atoms were restrained to an approximate isotropic behaviour. The C10—C11 and C10—C12 distances were restrained to 1.540 (8) Å.

Figures

Fig. 1.
The structure of the title complex, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. C-bound H atoms have been omitted for clarity. Only the major disorder component of one of the perchlorate anions is ...
Fig. 2.
The crystal packing of the title compound. Intermolecular N—H···O hydrogen bonds are drawn as dashed lines.

Crystal data

[Cu(C13H20N2O2)2](ClO4)2F(000) = 3064
Mr = 735.06Dx = 1.517 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2387 reflections
a = 17.4415 (13) Åθ = 2.4–24.5°
b = 14.009 (1) ŵ = 0.91 mm1
c = 26.350 (2) ÅT = 298 K
V = 6438.2 (8) Å3Block, blue
Z = 80.20 × 0.18 × 0.17 mm

Data collection

Bruker SMART CCD area-detector diffractometer7004 independent reflections
Radiation source: fine-focus sealed tube3260 reflections with I > 2σ(I)
graphiteRint = 0.117
ω scanθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −22→20
Tmin = 0.839, Tmax = 0.861k = −17→17
36964 measured reflectionsl = −29→33

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.182H-atom parameters constrained
S = 1.01w = 1/[σ2(Fo2) + (0.0802P)2 + 0.2786P] where P = (Fo2 + 2Fc2)/3
7004 reflections(Δ/σ)max = 0.001
449 parametersΔρmax = 0.67 e Å3
94 restraintsΔρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Cu10.20772 (3)0.30739 (5)0.29436 (2)0.0430 (2)
Cl10.35617 (10)0.50449 (12)0.29759 (6)0.0669 (5)
N10.2829 (2)0.2199 (3)0.32521 (16)0.0443 (11)
N20.3178 (3)0.3382 (3)0.41567 (18)0.0574 (13)
H2A0.32980.36180.38490.069*
H2B0.26760.34970.42070.069*
N30.1097 (2)0.3435 (3)0.26267 (15)0.0417 (10)
N40.1766 (2)0.4031 (3)0.15898 (16)0.0528 (12)
H4A0.19100.36760.13210.063*
H4B0.20560.38510.18560.063*
O10.2543 (2)0.2985 (3)0.22831 (13)0.0514 (10)
O20.4443 (2)0.2600 (3)0.10520 (15)0.0643 (11)
O30.17867 (19)0.3576 (2)0.35993 (12)0.0444 (9)
O40.0587 (2)0.5763 (3)0.47332 (14)0.0559 (10)
O50.3648 (3)0.5847 (5)0.3286 (3)0.147 (2)
O60.3925 (4)0.4248 (5)0.3208 (3)0.159 (3)
O70.3923 (3)0.5183 (5)0.2529 (2)0.148 (2)
O80.2780 (3)0.4867 (4)0.2923 (3)0.135 (2)
Cl2'0.17958 (9)0.25224 (11)0.03722 (6)0.0601 (4)0.389 (15)
O9'0.1570 (12)0.2204 (11)0.0869 (4)0.129 (7)0.389 (15)
O10'0.2039 (11)0.1768 (11)0.0069 (7)0.122 (8)0.389 (15)
O11'0.1144 (9)0.3020 (11)0.0192 (8)0.141 (8)0.389 (15)
O12'0.2391 (10)0.3202 (14)0.0434 (8)0.132 (10)0.389 (15)
Cl20.17958 (9)0.25224 (11)0.03722 (6)0.0601 (4)0.611 (15)
O90.1079 (6)0.2451 (11)0.0606 (6)0.164 (6)0.611 (15)
O100.2095 (8)0.1581 (7)0.0317 (6)0.145 (6)0.611 (15)
O110.1749 (9)0.2871 (9)−0.0129 (3)0.157 (6)0.611 (15)
O120.2292 (6)0.3064 (10)0.0667 (5)0.133 (6)0.611 (15)
C10.3633 (3)0.2031 (3)0.2500 (2)0.0433 (13)
C20.3208 (3)0.2609 (4)0.21648 (19)0.0419 (12)
C30.3518 (3)0.2759 (4)0.1675 (2)0.0496 (14)
H30.32430.31210.14410.060*
C40.4217 (3)0.2383 (4)0.1535 (2)0.0466 (13)
C50.4627 (3)0.1818 (4)0.1865 (2)0.0510 (14)
H50.50960.15570.17690.061*
C60.4335 (3)0.1650 (4)0.2330 (2)0.0510 (15)
H60.46110.12620.25500.061*
C70.3393 (3)0.1828 (4)0.3006 (2)0.0447 (13)
H70.36780.13720.31800.054*
C80.2723 (3)0.1865 (4)0.3781 (2)0.0536 (15)
H8A0.27910.11780.37930.064*
H8B0.22050.20080.38900.064*
C90.3286 (4)0.2335 (4)0.4139 (2)0.0597 (16)
H9A0.32200.20730.44770.072*
H9B0.38050.21940.40290.072*
C100.3603 (4)0.3919 (5)0.4532 (3)0.084 (2)
H100.34010.36830.48560.101*
C110.4435 (4)0.3724 (7)0.4567 (4)0.151 (4)
H11A0.46740.38620.42470.182*
H11B0.45150.30650.46510.182*
H11C0.46570.41200.48260.182*
C120.3397 (4)0.4960 (4)0.4536 (3)0.085 (2)
H12A0.36560.52710.48120.102*
H12B0.28530.50280.45780.102*
H12C0.35510.52470.42220.102*
C130.5160 (3)0.2259 (5)0.0871 (3)0.0691 (18)
H13A0.55540.24160.11110.083*
H13B0.52740.25520.05510.083*
H13C0.51360.15790.08300.083*
C140.0646 (3)0.4398 (4)0.33394 (18)0.0391 (12)
C150.1234 (3)0.4187 (4)0.36975 (19)0.0397 (12)
C160.1200 (3)0.4628 (4)0.41700 (19)0.0416 (13)
H160.15660.44720.44130.050*
C170.0644 (3)0.5287 (4)0.4289 (2)0.0457 (13)
C180.0072 (3)0.5516 (4)0.3937 (2)0.0482 (14)
H18−0.02990.59710.40120.058*
C190.0073 (3)0.5055 (4)0.3478 (2)0.0472 (14)
H19−0.03210.51810.32500.057*
C200.0594 (3)0.3960 (4)0.28523 (19)0.0438 (13)
H200.01400.40650.26750.053*
C210.0873 (3)0.3067 (4)0.2121 (2)0.0573 (16)
H21A0.03450.28530.21340.069*
H21B0.11910.25200.20390.069*
C220.0957 (3)0.3814 (5)0.1706 (2)0.0640 (18)
H22A0.07060.35860.14010.077*
H22B0.07010.43950.18120.077*
C230.1938 (4)0.5072 (4)0.1473 (2)0.0620 (17)
H230.17420.54620.17530.074*
C240.2780 (4)0.5209 (5)0.1442 (3)0.093 (2)
H24A0.30180.49410.17380.112*
H24B0.28940.58780.14240.112*
H24C0.29730.48950.11440.112*
C250.1517 (4)0.5364 (5)0.0988 (2)0.082 (2)
H25A0.17380.50370.07030.098*
H25B0.15640.60410.09400.098*
H25C0.09850.51980.10170.098*
C260.1108 (4)0.5532 (4)0.5135 (2)0.0648 (17)
H26A0.10470.48730.52260.078*
H26B0.10010.59270.54240.078*
H26C0.16240.56400.50230.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cu10.0412 (4)0.0492 (4)0.0387 (4)0.0057 (3)−0.0002 (3)0.0029 (3)
Cl10.0691 (11)0.0669 (11)0.0649 (11)−0.0151 (9)0.0239 (9)−0.0104 (9)
N10.053 (3)0.037 (2)0.043 (3)0.003 (2)−0.005 (2)0.005 (2)
N20.051 (3)0.063 (3)0.058 (3)0.015 (2)−0.012 (2)−0.012 (2)
N30.039 (2)0.049 (3)0.037 (3)−0.001 (2)0.000 (2)0.001 (2)
N40.051 (3)0.074 (4)0.034 (3)0.017 (3)−0.001 (2)0.006 (2)
O10.046 (2)0.064 (3)0.044 (2)0.019 (2)0.0036 (18)0.0074 (18)
O20.057 (3)0.074 (3)0.061 (3)0.010 (2)0.015 (2)0.002 (2)
O30.041 (2)0.051 (2)0.041 (2)0.0093 (18)−0.0017 (16)0.0019 (17)
O40.062 (3)0.059 (3)0.046 (2)0.002 (2)0.005 (2)−0.0064 (19)
O50.115 (4)0.140 (5)0.186 (6)−0.023 (4)0.009 (4)−0.075 (5)
O60.172 (6)0.147 (5)0.159 (6)0.045 (5)0.010 (5)0.046 (5)
O70.124 (4)0.236 (6)0.083 (4)0.000 (4)0.044 (3)0.022 (4)
O80.081 (4)0.112 (4)0.211 (6)−0.031 (3)0.039 (4)−0.051 (4)
Cl2'0.0687 (10)0.0550 (10)0.0566 (10)−0.0030 (9)−0.0040 (8)0.0000 (8)
O9'0.144 (11)0.142 (10)0.100 (9)0.017 (8)0.020 (8)0.043 (8)
O10'0.141 (11)0.119 (11)0.105 (10)0.003 (8)0.013 (8)−0.047 (8)
O11'0.116 (11)0.145 (11)0.161 (12)0.028 (8)−0.040 (9)0.030 (8)
O12'0.128 (12)0.126 (12)0.142 (13)−0.047 (8)0.004 (9)−0.015 (9)
Cl20.0687 (10)0.0550 (10)0.0566 (10)−0.0030 (9)−0.0040 (8)0.0000 (8)
O90.108 (8)0.204 (10)0.179 (10)−0.006 (7)0.050 (7)−0.008 (8)
O100.188 (9)0.102 (7)0.144 (9)0.044 (6)−0.028 (8)−0.011 (6)
O110.179 (10)0.187 (10)0.105 (8)−0.003 (7)−0.018 (7)0.049 (6)
O120.082 (7)0.208 (14)0.109 (10)−0.044 (7)−0.002 (7)−0.089 (9)
C10.043 (3)0.039 (3)0.047 (3)0.005 (3)−0.006 (3)−0.003 (3)
C20.038 (3)0.043 (3)0.045 (3)0.005 (3)−0.003 (2)−0.003 (2)
C30.046 (3)0.057 (4)0.046 (3)0.014 (3)−0.002 (3)−0.002 (3)
C40.046 (3)0.050 (3)0.044 (3)−0.007 (3)0.005 (3)−0.006 (3)
C50.039 (3)0.050 (4)0.064 (4)0.007 (3)0.002 (3)−0.008 (3)
C60.045 (3)0.052 (4)0.056 (4)0.013 (3)−0.010 (3)−0.004 (3)
C70.057 (3)0.035 (3)0.042 (3)0.004 (3)−0.011 (3)0.000 (2)
C80.072 (4)0.040 (3)0.049 (3)0.008 (3)−0.001 (3)0.011 (3)
C90.073 (4)0.062 (4)0.045 (3)0.013 (3)−0.009 (3)0.007 (3)
C100.084 (5)0.103 (6)0.065 (5)−0.010 (5)−0.020 (4)−0.003 (4)
C110.112 (6)0.167 (8)0.175 (8)0.016 (6)−0.071 (6)−0.036 (6)
C120.094 (5)0.077 (5)0.084 (5)−0.018 (4)0.006 (4)−0.024 (4)
C130.050 (4)0.077 (5)0.080 (5)−0.003 (3)0.021 (3)−0.015 (4)
C140.038 (3)0.046 (3)0.033 (3)0.002 (3)0.007 (2)0.004 (2)
C150.043 (3)0.038 (3)0.038 (3)−0.003 (2)0.006 (2)0.009 (2)
C160.041 (3)0.050 (3)0.034 (3)−0.004 (3)−0.002 (2)0.007 (2)
C170.053 (3)0.042 (3)0.042 (3)−0.005 (3)0.012 (3)0.003 (3)
C180.043 (3)0.044 (3)0.058 (4)0.008 (3)0.008 (3)0.001 (3)
C190.036 (3)0.054 (4)0.052 (4)0.003 (3)0.006 (3)0.011 (3)
C200.032 (3)0.059 (4)0.041 (3)−0.004 (3)−0.002 (2)0.013 (3)
C210.044 (3)0.081 (4)0.047 (4)−0.006 (3)−0.009 (3)−0.006 (3)
C220.053 (4)0.105 (5)0.034 (3)0.016 (4)−0.010 (3)0.002 (3)
C230.078 (5)0.059 (4)0.049 (4)0.017 (4)−0.003 (3)−0.002 (3)
C240.095 (6)0.078 (5)0.107 (6)−0.004 (4)−0.007 (5)0.019 (4)
C250.110 (6)0.079 (5)0.056 (4)0.033 (4)−0.004 (4)0.012 (4)
C260.081 (5)0.068 (4)0.045 (4)0.004 (4)0.003 (3)−0.008 (3)

Geometric parameters (Å, °)

Cu1—O11.925 (3)C8—H8B0.97
Cu1—O31.933 (3)C9—H9A0.97
Cu1—N31.969 (4)C9—H9B0.97
Cu1—N11.970 (4)C10—C111.479 (7)
Cl1—O71.349 (5)C10—C121.502 (6)
Cl1—O81.393 (5)C10—H100.98
Cl1—O51.398 (6)C11—H11A0.96
Cl1—O61.422 (6)C11—H11B0.96
N1—C71.287 (6)C11—H11C0.96
N1—C81.481 (6)C12—H12A0.96
N2—C101.447 (7)C12—H12B0.96
N2—C91.480 (7)C12—H12C0.96
N2—H2A0.90C13—H13A0.96
N2—H2B0.90C13—H13B0.96
N3—C201.290 (6)C13—H13C0.96
N3—C211.480 (6)C14—C191.407 (7)
N4—C221.476 (7)C14—C151.424 (7)
N4—C231.520 (7)C14—C201.426 (7)
N4—H4A0.90C15—C161.391 (7)
N4—H4B0.90C16—C171.375 (7)
O1—C21.312 (6)C16—H160.93
O2—C41.366 (6)C17—C181.400 (7)
O2—C131.421 (6)C18—C191.370 (7)
O3—C151.315 (6)C18—H180.93
O4—C171.351 (6)C19—H190.93
O4—C261.431 (6)C20—H200.93
Cl2'—O10'1.391 (8)C21—C221.521 (8)
Cl2'—O11'1.416 (8)C21—H21A0.97
Cl2'—O12'1.418 (9)C21—H21B0.97
Cl2'—O9'1.437 (8)C22—H22A0.97
C1—C21.409 (7)C22—H22B0.97
C1—C61.410 (7)C23—C241.484 (8)
C1—C71.427 (7)C23—C251.529 (8)
C2—C31.416 (7)C23—H230.98
C3—C41.379 (7)C24—H24A0.96
C3—H30.93C24—H24B0.96
C4—C51.376 (7)C24—H24C0.96
C5—C61.348 (7)C25—H25A0.96
C5—H50.93C25—H25B0.96
C6—H60.93C25—H25C0.96
C7—H70.93C26—H26A0.96
C8—C91.513 (8)C26—H26B0.96
C8—H8A0.97C26—H26C0.96
O1—Cu1—O3160.46 (15)C11—C10—H10103.6
O1—Cu1—N389.97 (16)C12—C10—H10103.6
O3—Cu1—N393.31 (16)C10—C11—H11A109.5
O1—Cu1—N192.98 (16)C10—C11—H11B109.5
O3—Cu1—N191.84 (16)H11A—C11—H11B109.5
N3—Cu1—N1155.90 (17)C10—C11—H11C109.5
O7—Cl1—O8113.3 (4)H11A—C11—H11C109.5
O7—Cl1—O5110.2 (5)H11B—C11—H11C109.5
O8—Cl1—O5107.9 (4)C10—C12—H12A109.5
O7—Cl1—O6106.2 (4)C10—C12—H12B109.5
O8—Cl1—O6109.8 (4)H12A—C12—H12B109.5
O5—Cl1—O6109.4 (5)C10—C12—H12C109.5
C7—N1—C8116.1 (4)H12A—C12—H12C109.5
C7—N1—Cu1123.5 (4)H12B—C12—H12C109.5
C8—N1—Cu1120.1 (3)O2—C13—H13A109.5
C10—N2—C9118.1 (5)O2—C13—H13B109.5
C10—N2—H2A107.8H13A—C13—H13B109.5
C9—N2—H2A107.8O2—C13—H13C109.5
C10—N2—H2B107.8H13A—C13—H13C109.5
C9—N2—H2B107.8H13B—C13—H13C109.5
H2A—N2—H2B107.1C19—C14—C15118.4 (5)
C20—N3—C21115.7 (4)C19—C14—C20118.0 (5)
C20—N3—Cu1122.8 (3)C15—C14—C20123.6 (5)
C21—N3—Cu1121.4 (3)O3—C15—C16119.7 (5)
C22—N4—C23115.3 (5)O3—C15—C14122.2 (5)
C22—N4—H4A108.4C16—C15—C14118.1 (5)
C23—N4—H4A108.4C17—C16—C15122.1 (5)
C22—N4—H4B108.4C17—C16—H16118.9
C23—N4—H4B108.4C15—C16—H16118.9
H4A—N4—H4B107.5O4—C17—C16125.5 (5)
C2—O1—Cu1127.9 (3)O4—C17—C18114.1 (5)
C4—O2—C13119.4 (5)C16—C17—C18120.4 (5)
C15—O3—Cu1127.2 (3)C19—C18—C17118.4 (5)
C17—O4—C26118.8 (4)C19—C18—H18120.8
O10'—Cl2'—O11'115.3 (10)C17—C18—H18120.8
O10'—Cl2'—O12'110.6 (10)C18—C19—C14122.5 (5)
O11'—Cl2'—O12'107.2 (11)C18—C19—H19118.7
O10'—Cl2'—O9'111.7 (10)C14—C19—H19118.7
O11'—Cl2'—O9'103.8 (9)N3—C20—C14128.1 (5)
O12'—Cl2'—O9'107.7 (10)N3—C20—H20116.0
C2—C1—C6118.4 (5)C14—C20—H20116.0
C2—C1—C7123.2 (5)N3—C21—C22112.4 (5)
C6—C1—C7118.5 (5)N3—C21—H21A109.1
O1—C2—C1123.1 (5)C22—C21—H21A109.1
O1—C2—C3119.7 (5)N3—C21—H21B109.1
C1—C2—C3117.2 (5)C22—C21—H21B109.1
C4—C3—C2121.6 (5)H21A—C21—H21B107.8
C4—C3—H3119.2N4—C22—C21112.6 (4)
C2—C3—H3119.2N4—C22—H22A109.1
O2—C4—C5124.5 (5)C21—C22—H22A109.1
O2—C4—C3114.7 (5)N4—C22—H22B109.1
C5—C4—C3120.7 (5)C21—C22—H22B109.1
C6—C5—C4118.6 (5)H22A—C22—H22B107.8
C6—C5—H5120.7C24—C23—N4109.2 (5)
C4—C5—H5120.7C24—C23—C25113.2 (6)
C5—C6—C1123.5 (5)N4—C23—C25109.3 (5)
C5—C6—H6118.3C24—C23—H23108.3
C1—C6—H6118.3N4—C23—H23108.3
N1—C7—C1127.8 (5)C25—C23—H23108.3
N1—C7—H7116.1C23—C24—H24A109.5
C1—C7—H7116.1C23—C24—H24B109.5
N1—C8—C9111.6 (5)H24A—C24—H24B109.5
N1—C8—H8A109.3C23—C24—H24C109.5
C9—C8—H8A109.3H24A—C24—H24C109.5
N1—C8—H8B109.3H24B—C24—H24C109.5
C9—C8—H8B109.3C23—C25—H25A109.5
H8A—C8—H8B108.0C23—C25—H25B109.5
N2—C9—C8111.6 (4)H25A—C25—H25B109.5
N2—C9—H9A109.3C23—C25—H25C109.5
C8—C9—H9A109.3H25A—C25—H25C109.5
N2—C9—H9B109.3H25B—C25—H25C109.5
C8—C9—H9B109.3O4—C26—H26A109.5
H9A—C9—H9B108.0O4—C26—H26B109.5
N2—C10—C11116.8 (6)H26A—C26—H26B109.5
N2—C10—C12112.8 (5)O4—C26—H26C109.5
C11—C10—C12114.4 (7)H26A—C26—H26C109.5
N2—C10—H10103.6H26B—C26—H26C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4B···O10.901.862.705 (5)156
N4—H4A···O120.902.042.930 (13)171
N2—H2B···O30.902.232.849 (5)125
N2—H2A···O60.902.203.070 (9)163

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CI5083).

References

  • Arnold, P. J., Davies, S. C., Durrant, M. C., Griffiths, D. V., Hughes, D. L. & Sharpe, P. C. (2003). Inorg. Chim. Acta, 348, 143–149.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Butcher, R. J., Mockler, G. M. & McKern, O. (2003). Acta Cryst. E59, m1104–m1106.
  • Collinson, S. R. & Fenton, D. E. (1996). Coord. Chem. Rev.148, 19–40.
  • Elmali, A., Zeyrek, C. T., Elerman, Y. & Svoboda, I. (2000). Acta Cryst. C56, 1302–1304. [PubMed]
  • García-Raso, Á., Fiol, J. J., López-Zafra, A., Castro, J. A., Cabrero, A., Mata, I. & Molins, E. (2003). Polyhedron, 22, 403–409.
  • Hebbachi, R. & Benali-Cherif, N. (2005). Acta Cryst. E61, m1188–m1190.
  • Hossain, M. E., Alam, M. N., Begum, J., Ali, M. A., Nazimuddin, M., Smith, F. E. & Hynes, R. C. (1996). Inorg. Chim. Acta, 249, 207–213.
  • Musie, G. T., Li, X. & Powell, D. R. (2003). Inorg. Chim. Acta, 348, 69–74.
  • Raptopoulou, C. P., Papadopoulos, A. N., Malamatari, D. A., Ioannidis, E., Moisidis, G., Terzis, A. & Kessissoglou, D. P. (1998). Inorg. Chim. Acta, 272, 283–290.
  • Ray, M. S., Bhattacharya, R. B., Chaudhuri, S., Righi, L., Bocelli, G., Mukhopadhyay, G. & Ghosh, A. (2003). Polyhedron, 22, 617–624.
  • Reddy, P. A. N., Datta, R. & Chakravarty, A. R. (2000). Inorg. Chem. Commun.3, 322–324.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Tarafder, M. T. H., Jin, K. T., Crouse, K. A., Ali, A. M., Yamin, B. M. & Fun, H.-K. (2002). Polyhedron, 21, 2547–2554.
  • Wang, C.-Y. (2009). J. Coord. Chem.62, 2860–2868.
  • Wang, C.-Y., Li, J.-F. & Cao, F. (2010). Acta Cryst. E66, m445–m446. [PMC free article] [PubMed]
  • Wang, C.-Y., Wu, X., Tu, S.-J. & Jiang, B. (2009a). Synth. React. Inorg. Met. Org. Nano Met. Chem.39, 78–82.
  • Wang, C.-Y., Ye, J.-Y., Lv, C.-Y., Lan, W.-Z. & Zhou, J.-B. (2009b). J. Coord. Chem.62, 2164–2171.
  • Warda, S. A., Friebel, C., Sivý, J., Plesch, G. & Bláhová, M. (1997). Acta Cryst. C53, 50–54.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography