PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1305.
Published online 2010 May 12. doi:  10.1107/S1600536810016132
PMCID: PMC2979575

Spiro­[1,3-dioxolane-2,3′-indolin]-2′-one

Abstract

The title compound, C10H9NO3, was synthesized by the condensation reaction of isatin (systematic name 1H-indole-2,3-dione) with glycol in presence of p-toluene­sulfonic acid. The indol-2-one ring system is essentially planar [N—C—C—C torsion angle = 3.1 (2)°], and the 1,3-dioxolane ring is slightly distorted. The crystal structure exhibits inter­molecular N—H(...)O hydrogen bonds.

Related literature

For the synthesis of the title compound, see: Santos et al. (2008 [triangle]). For the bioactivity of the title compound, see: Demosthenes et al. (1998 [triangle]); Rajopadhye & Popp (1988 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1305-scheme1.jpg

Experimental

Crystal data

  • C10H9NO3
  • M r = 191.18
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1305-efi1.jpg
  • a = 7.484 (2) Å
  • b = 5.650 (1) Å
  • c = 20.942 (5) Å
  • β = 97.889 (8)°
  • V = 877.1 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.11 mm−1
  • T = 273 K
  • 0.36 × 0.27 × 0.21 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2002 [triangle]) T min = 0.963, T max = 0.989
  • 4056 measured reflections
  • 1534 independent reflections
  • 1093 reflections with I > 2σ(I)
  • R int = 0.070

Refinement

  • R[F 2 > 2σ(F 2)] = 0.048
  • wR(F 2) = 0.137
  • S = 1.09
  • 1534 reflections
  • 131 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: SMART (Bruker, 2002 [triangle]); cell refinement: SAINT-Plus (Bruker, 2002 [triangle]); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016132/lx2143sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016132/lx2143Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Isatin derivatives, has caught great attention of many researchers as a versatile lead molecule for designing of potential drugs for the variety of biological activities, such as anti-bacteria, anti-virus, anti-tumor and neuroprotection. Among these compounds, spiro-oxindol analogues have received considerable attention as potential anti-bacteria and neuroprotection agents(Demosthenes et al. 1998; Rajopadhye et al. 1988; Santos et al. 2008).

The X-ray structural analysis confirmed the assignment of its structure from spectroscopic data. The molecular structure is depicted in Fig. 1, and a diagram of interactions between the title compounds is depicted in Fig. 2. Geometric parameters of the title compound are in the usual ranges. The crystal packing (Fig. 2) is stabilized by intermolecular N—H···O hydrogen bonds between the indoline H atom and the oxygen of the C═O unit, with a N1—H1···O1i (Table 1).

Experimental

Isatin (1 mmol) and glycol (1 mmol) was dissolved in cyclohexane (20 ml), and 0.01 mmol TsOH was added. The mixture was stirred under reflux. After completion of the reaction, it was evaporated to dryness, followed by chromatography to the pure title compound. 1H-NMR (D6-Acetone, 400 MHz) delta: 10.44 (1H, s), 7.33 (2H, m), 7.00 (1H, td, J = 7.2, 0.8 Hz), 6.82 (1H, d, J = 7.6 Hz), 4.33 (2H, m), 4.23 (2H, m); EI–MS, m/z (%): 233 (M+)

Refinement

The H atom bound N atom was located from difference Fourier map and refined freely. All H atoms of C atoms were positioned geometrically and refined using a riding model, with C–H = 0.93 Å for aryl and 0.97 Å for methylene H atoms. Uiso(H)= 1.2Ueq(C) for all H atoms.

Figures

Fig. 1.
The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. H atoms are presented as a small cycles of arbitrary radius.
Fig. 2.
N–H···O interactions (dotted lines) in the crystal structure of the title compound.

Crystal data

C10H9NO3F(000) = 400
Mr = 191.18Dx = 1.448 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 7304 reflections
a = 7.484 (2) Åθ = 1.5–25.0°
b = 5.650 (1) ŵ = 0.11 mm1
c = 20.942 (5) ÅT = 273 K
β = 97.889 (8)°Block, colourless
V = 877.1 (4) Å30.36 × 0.27 × 0.21 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1534 independent reflections
Radiation source: fine-focus sealed tube1093 reflections with I > 2σ(I)
graphiteRint = 0.070
phi and ω scansθmax = 25.0°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Bruker, 2002)h = −8→8
Tmin = 0.963, Tmax = 0.989k = −6→6
4056 measured reflectionsl = −21→24

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difference Fourier map
wR(F2) = 0.137H atoms treated by a mixture of independent and constrained refinement
S = 1.09w = 1/[σ2(Fo2) + (0.0648P)2 + 0.151P] where P = (Fo2 + 2Fc2)/3
1534 reflections(Δ/σ)max < 0.001
131 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.6983 (2)0.2241 (3)0.50491 (8)0.0600 (5)
O30.6788 (2)0.6884 (3)0.43906 (8)0.0551 (5)
O20.8104 (2)0.4151 (3)0.38133 (8)0.0560 (5)
N10.4575 (3)0.1613 (4)0.42609 (9)0.0469 (6)
H10.407 (4)0.044 (5)0.4439 (13)0.070 (9)*
C70.3813 (3)0.2722 (4)0.36864 (10)0.0400 (6)
C20.6494 (3)0.4723 (4)0.40675 (10)0.0417 (6)
C80.4869 (3)0.4639 (4)0.35588 (10)0.0402 (6)
C30.4343 (3)0.6053 (4)0.30311 (11)0.0506 (6)
H3A0.50320.73550.29450.061*
C60.2254 (3)0.2139 (4)0.32859 (11)0.0512 (6)
H6A0.15660.08340.33700.061*
C10.6076 (3)0.2731 (4)0.45352 (10)0.0447 (6)
C50.1752 (3)0.3571 (5)0.27544 (11)0.0550 (7)
H5A0.07070.32160.24770.066*
C40.2758 (3)0.5498 (5)0.26285 (11)0.0542 (7)
H4A0.23810.64430.22720.065*
C100.8530 (4)0.7641 (6)0.4348 (2)0.0911 (11)
H10A0.91640.79720.47740.109*
H10B0.85040.90750.40920.109*
C90.9435 (4)0.5760 (6)0.40444 (16)0.0809 (10)
H9B1.00190.63830.36940.097*
H9C1.03400.50110.43550.097*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0568 (12)0.0592 (12)0.0595 (10)−0.0091 (9)−0.0079 (9)0.0079 (8)
O30.0577 (11)0.0369 (9)0.0735 (11)−0.0087 (8)0.0196 (9)−0.0187 (8)
O20.0441 (10)0.0489 (10)0.0777 (11)−0.0054 (8)0.0176 (8)−0.0210 (8)
N10.0488 (13)0.0362 (11)0.0535 (11)−0.0084 (10)−0.0008 (9)0.0106 (9)
C70.0435 (14)0.0317 (12)0.0452 (12)0.0029 (10)0.0081 (10)0.0008 (9)
C20.0424 (13)0.0305 (12)0.0538 (12)−0.0037 (10)0.0127 (10)−0.0069 (10)
C80.0435 (13)0.0297 (12)0.0490 (12)0.0015 (10)0.0122 (10)−0.0006 (9)
C30.0542 (15)0.0397 (13)0.0605 (14)0.0000 (11)0.0174 (12)0.0095 (11)
C60.0495 (16)0.0433 (14)0.0596 (14)−0.0058 (11)0.0032 (11)0.0019 (11)
C10.0464 (14)0.0368 (13)0.0497 (12)0.0005 (11)0.0022 (11)−0.0019 (10)
C50.0483 (15)0.0612 (17)0.0540 (13)0.0034 (13)0.0014 (11)0.0042 (12)
C40.0558 (16)0.0569 (16)0.0505 (13)0.0139 (14)0.0095 (11)0.0114 (11)
C100.059 (2)0.0579 (19)0.160 (3)−0.0178 (16)0.028 (2)−0.043 (2)
C90.0602 (18)0.084 (2)0.102 (2)−0.0233 (17)0.0217 (16)−0.0377 (19)

Geometric parameters (Å, °)

O1—C11.223 (2)C3—C41.393 (3)
O3—C101.387 (4)C3—H3A0.9300
O3—C21.399 (3)C6—C51.386 (3)
O2—C91.386 (3)C6—H6A0.9300
O2—C21.420 (3)C5—C41.370 (3)
N1—C11.347 (3)C5—H5A0.9300
N1—C71.406 (3)C4—H4A0.9300
N1—H10.87 (3)C10—C91.452 (4)
C7—C61.380 (3)C10—H10A0.9700
C7—C81.388 (3)C10—H10B0.9700
C2—C81.503 (3)C9—H9B0.9700
C2—C11.552 (3)C9—H9C0.9700
C8—C31.377 (3)
C10—O3—C2108.95 (19)C5—C6—H6A121.2
C9—O2—C2109.03 (19)O1—C1—N1126.8 (2)
C1—N1—C7111.8 (2)O1—C1—C2125.8 (2)
C1—N1—H1124.0 (17)N1—C1—C2107.44 (18)
C7—N1—H1123.8 (17)C4—C5—C6121.5 (2)
C6—C7—C8121.7 (2)C4—C5—H5A119.2
C6—C7—N1128.6 (2)C6—C5—H5A119.2
C8—C7—N1109.75 (19)C5—C4—C3120.5 (2)
O3—C2—O2107.13 (17)C5—C4—H4A119.8
O3—C2—C8115.39 (18)C3—C4—H4A119.8
O2—C2—C8111.88 (17)O3—C10—C9107.6 (2)
O3—C2—C1111.09 (17)O3—C10—H10A110.2
O2—C2—C1109.05 (18)C9—C10—H10A110.2
C8—C2—C1102.17 (17)O3—C10—H10B110.2
C3—C8—C7120.0 (2)C9—C10—H10B110.2
C3—C8—C2131.7 (2)H10A—C10—H10B108.5
C7—C8—C2108.34 (17)O2—C9—C10106.1 (2)
C8—C3—C4118.7 (2)O2—C9—H9B110.5
C8—C3—H3A120.6C10—C9—H9B110.5
C4—C3—H3A120.6O2—C9—H9C110.5
C7—C6—C5117.6 (2)C10—C9—H9C110.5
C7—C6—H6A121.2H9B—C9—H9C108.7
C1—N1—C7—C6−177.7 (2)C7—C8—C3—C4−0.9 (3)
C1—N1—C7—C81.5 (3)C2—C8—C3—C4178.4 (2)
C10—O3—C2—O2−0.6 (3)C8—C7—C6—C5−1.3 (4)
C10—O3—C2—C8−125.9 (3)N1—C7—C6—C5177.8 (2)
C10—O3—C2—C1118.4 (3)C7—N1—C1—O1176.7 (2)
C9—O2—C2—O37.5 (3)C7—N1—C1—C2−5.3 (3)
C9—O2—C2—C8134.9 (2)O3—C2—C1—O1−51.7 (3)
C9—O2—C2—C1−112.8 (2)O2—C2—C1—O166.2 (3)
C6—C7—C8—C31.8 (3)C8—C2—C1—O1−175.3 (2)
N1—C7—C8—C3−177.5 (2)O3—C2—C1—N1130.3 (2)
C6—C7—C8—C2−177.7 (2)O2—C2—C1—N1−111.9 (2)
N1—C7—C8—C23.1 (2)C8—C2—C1—N16.7 (2)
O3—C2—C8—C354.2 (3)C7—C6—C5—C4−0.1 (4)
O2—C2—C8—C3−68.6 (3)C6—C5—C4—C30.9 (4)
C1—C2—C8—C3174.9 (2)C8—C3—C4—C5−0.4 (4)
O3—C2—C8—C7−126.4 (2)C2—O3—C10—C9−6.2 (4)
O2—C2—C8—C7110.7 (2)C2—O2—C9—C10−11.1 (4)
C1—C2—C8—C7−5.8 (2)O3—C10—C9—O210.7 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.87 (3)2.07 (3)2.941 (3)174 (2)

Symmetry codes: (i) −x+1, −y, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LX2143).

References

  • Bruker (2002). SMART, SAINT-Plus and SADABS Bruker AXS Inc, Madison, Wisconsin, USA.
  • Demosthenes, F., William, J. R., David, S. C. & David, L. C. (1998). Tetrahedron Lett 39, 2235–2238.
  • Rajopadhye, M. & Popp, F. D. (1988). J. Med. Chem.31, 1001–1005. [PubMed]
  • Santos, E. L., Gomes, W. A. Jr, Ribeiro, N. M. & Andrade, H. M. C. (2008). J. Mol. Catal. A, 295, 18–23.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography