PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1344.
Published online 2010 May 15. doi:  10.1107/S1600536810017204
PMCID: PMC2979572

1-(2-Bromo­ethyl)-1,4-diazo­niabicyclo­[2.2.2]octane bromide tetra­fluoro­borate

Abstract

In the crystal of the title compound, C8H17BrN2 2+·Br·BF4 , a weak inter­molecular N—H(...)Br hydrogen bond is observed between the cation and the bromide anion. A two-part disorder model was applied to the BF4 anion with a refined major–minor occupancy ratio of 0.837 (14):0.163 (14).

Related literature

For the crystal structures and properties of related compounds, see: Chen et al.(2009 [triangle]); Fu et al. (2009 [triangle]); Zhao et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1344-scheme1.jpg

Experimental

Crystal data

  • C8H17BrN2 2+·BF4 ·Br
  • M r = 387.87
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1344-efi1.jpg
  • a = 11.972 (2) Å
  • b = 10.782 (2) Å
  • c = 21.165 (4) Å
  • V = 2732.0 (10) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 5.96 mm−1
  • T = 293 K
  • 0.3 × 0.25 × 0.2 mm

Data collection

  • Rigaku Mercury2 diffractometer
  • Absorption correction: multi-scan (CrystalClear; Rigaku, 2005 [triangle]) T min = 0.191, T max = 0.303
  • 26313 measured reflections
  • 3124 independent reflections
  • 1881 reflections with I > 2σ(I)
  • R int = 0.109

Refinement

  • R[F 2 > 2σ(F 2)] = 0.058
  • wR(F 2) = 0.108
  • S = 1.04
  • 3124 reflections
  • 198 parameters
  • 34 restraints
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.47 e Å−3
  • Δρmin = −0.47 e Å−3

Data collection: CrystalClear (Rigaku, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810017204/nk2032sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017204/nk2032Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by a start-up grant from Southeast University.

supplementary crystallographic information

Comment

The variable-temperature dielectric response, especially in relatively high frequency range, is very useful for searching phase transitions, in which there is a dielectric anomaly at the transition temperature. Unluckily, the title compound has no dielectric disuniform from 93 K to 453 K( m.p. > 473 K ) and report here.

In this report we have established unambiguously the structure at 293 K of the title compound in the solid state by X-ray diffraction analysis. As shown in Fig. 1. Single crystal X-ray analysis reveals that there are weak hydrogen bonds between 1-(2-bromoethyl)-1,4-diazabicyclo[2.2.2]octane-1,4-diium cation and bromide anion.

For the crystal structures and properties of related compounds, see: Chen et al. (2009); Fu et al. (2009); Zhao et al. (2008).

Experimental

1,4-Diazabicyclo [2.2.2]octane (5.6 g, 0.05 mol) was dissolved in 20 ml of chloroform. To this solution 0.048 mol of 1,2-dibromoethane was added at once and the mixture was refluxed for 8 hours. On standing for 16 hours at room temperature, colorless crystals were obtained in large quantity. The crude product was collected and dissolved in 20 ml methanol, and 10ml HBF4 (1 mol/L) in methanol was added slowly with stirring, while white precipitate formed at once.The suspension was filtered, and dissolved in H2O, After a few weeks, colorless crystals were obtained by slow evaporation.

Refinement

Positional parameters of all the H atoms except for H2 were calculated geometrically and the H atoms were set to ride on the C atoms to which they are bonded, with Uiso(H) = 1.2Ueq(C). The H2 on the N2 was freely refined. The BF4- anion was refined using a two-part disorder model with a major:minor occupancy ratio of 84:16%. Distance similarity and mild displacement parameter restraints were applied to the minor component.

Figures

Fig. 1.
The asymmetric unit of the title compound, showing the atomic numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and the minor disorder component is omitted.

Crystal data

C8H17BrN22+·BF4·BrF(000) = 1520
Mr = 387.87Dx = 1.886 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 5732 reflections
a = 11.972 (2) Åθ = 3.7–27.5°
b = 10.782 (2) ŵ = 5.96 mm1
c = 21.165 (4) ÅT = 293 K
V = 2732.0 (10) Å3Prism, colourless
Z = 80.3 × 0.25 × 0.2 mm

Data collection

Rigaku Mercury2 diffractometer3124 independent reflections
Radiation source: fine-focus sealed tube1881 reflections with I > 2σ(I)
graphiteRint = 0.109
CCD_Profile_fitting scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (CrystalClear; Rigaku, 2005)h = −15→15
Tmin = 0.191, Tmax = 0.303k = −14→14
26313 measured reflectionsl = −27→27

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.108H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.0229P)2 + 7.8245P] where P = (Fo2 + 2Fc2)/3
3124 reflections(Δ/σ)max < 0.001
198 parametersΔρmax = 0.47 e Å3
34 restraintsΔρmin = −0.47 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
Br10.71717 (5)0.02659 (6)0.01789 (3)0.0522 (2)
Br21.27841 (5)0.46079 (6)0.27319 (3)0.0510 (2)
C10.7924 (4)0.1425 (6)0.0745 (3)0.0471 (15)
H1A0.78440.22680.05920.057*
H1B0.76090.13750.11670.057*
C20.9138 (4)0.1047 (5)0.0752 (3)0.0411 (14)
H2A0.94230.10820.03240.049*
H2B0.91890.01930.08930.049*
C30.9635 (5)0.1612 (6)0.1856 (2)0.0523 (17)
H3A0.97870.07510.19570.063*
H3B0.88530.17740.19420.063*
C41.0354 (5)0.2443 (6)0.2262 (2)0.0464 (15)
H4A0.98910.30480.24780.056*
H4B1.07410.19530.25780.056*
C50.9738 (5)0.3202 (5)0.1038 (3)0.0402 (14)
H5A0.98390.33580.05900.048*
H5B0.89910.34650.11540.048*
C61.0584 (5)0.3924 (5)0.1409 (3)0.0466 (15)
H6A1.11160.43050.11240.056*
H6B1.02130.45780.16440.056*
C71.1075 (4)0.1500 (6)0.1040 (3)0.0512 (16)
H7A1.12660.17170.06090.061*
H7B1.11740.06120.10900.061*
C81.1838 (4)0.2187 (6)0.1496 (3)0.0491 (16)
H8A1.21880.16030.17830.059*
H8B1.24220.26120.12630.059*
N10.9874 (3)0.1842 (4)0.11705 (17)0.0266 (10)
N21.1176 (4)0.3085 (5)0.1852 (2)0.0397 (12)
H21.165 (6)0.349 (6)0.212 (3)0.09 (2)*
B10.4770 (8)0.2507 (9)0.0910 (4)0.0421 (19)0.837 (14)
F10.5239 (8)0.1669 (6)0.1311 (3)0.086 (2)0.837 (14)
F20.4322 (7)0.3475 (6)0.1246 (4)0.074 (2)0.837 (14)
F30.3930 (7)0.1935 (9)0.0574 (5)0.090 (3)0.837 (14)
F40.5562 (5)0.2945 (7)0.0483 (3)0.0681 (19)0.837 (14)
B1'0.460 (3)0.244 (3)0.0923 (13)0.0421 (19)0.163 (14)
F1'0.454 (3)0.186 (2)0.1488 (12)0.067 (7)0.163 (14)
F2'0.401 (3)0.353 (3)0.0918 (18)0.065 (8)0.163 (14)
F3'0.419 (4)0.168 (5)0.0460 (19)0.082 (9)0.163 (14)
F4'0.569 (2)0.276 (4)0.078 (2)0.084 (9)0.163 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0483 (4)0.0598 (4)0.0485 (4)−0.0138 (3)−0.0101 (3)−0.0049 (3)
Br20.0442 (4)0.0533 (4)0.0555 (4)0.0022 (3)−0.0125 (3)−0.0125 (3)
C10.039 (3)0.056 (4)0.046 (4)−0.010 (3)−0.010 (3)−0.010 (3)
C20.036 (3)0.039 (3)0.048 (4)−0.005 (3)−0.004 (3)−0.006 (3)
C30.051 (4)0.072 (4)0.033 (3)−0.020 (3)0.002 (3)0.015 (3)
C40.047 (3)0.067 (4)0.025 (3)0.003 (3)0.000 (3)0.001 (3)
C50.048 (3)0.027 (3)0.045 (3)0.006 (3)−0.016 (3)−0.003 (3)
C60.064 (4)0.029 (3)0.047 (4)−0.006 (3)−0.007 (3)0.002 (3)
C70.034 (3)0.052 (4)0.067 (4)0.009 (3)0.008 (3)−0.017 (3)
C80.028 (3)0.062 (4)0.057 (4)0.001 (3)0.002 (3)−0.006 (3)
N10.026 (2)0.026 (2)0.028 (2)−0.0026 (19)0.0001 (18)−0.0006 (18)
N20.036 (3)0.049 (3)0.034 (3)−0.011 (2)−0.004 (2)−0.002 (2)
B10.043 (5)0.041 (4)0.043 (5)−0.004 (4)−0.009 (4)0.000 (3)
F10.125 (7)0.079 (4)0.055 (4)0.022 (4)−0.005 (4)0.019 (3)
F20.087 (5)0.054 (3)0.080 (5)0.002 (3)0.021 (4)−0.022 (4)
F30.079 (5)0.118 (6)0.073 (5)−0.021 (4)−0.002 (4)−0.040 (4)
F40.063 (3)0.090 (4)0.051 (4)0.003 (3)0.012 (3)0.017 (3)
B1'0.043 (5)0.041 (4)0.043 (5)−0.004 (4)−0.009 (4)0.000 (3)
F1'0.092 (17)0.063 (13)0.047 (13)0.037 (13)0.009 (12)−0.001 (11)
F2'0.064 (15)0.048 (12)0.082 (18)−0.007 (12)0.028 (14)0.004 (14)
F3'0.096 (18)0.097 (17)0.052 (15)−0.041 (16)0.000 (15)−0.040 (13)
F4'0.053 (14)0.099 (16)0.101 (19)−0.009 (13)0.001 (15)0.015 (17)

Geometric parameters (Å, °)

Br1—C11.952 (5)C6—H6A0.9700
C1—C21.509 (7)C6—H6B0.9700
C1—H1A0.9700C7—N11.510 (6)
C1—H1B0.9700C7—C81.521 (8)
C2—N11.515 (6)C7—H7A0.9700
C2—H2A0.9700C7—H7B0.9700
C2—H2B0.9700C8—N21.461 (7)
C3—N11.499 (6)C8—H8A0.9700
C3—C41.511 (7)C8—H8B0.9700
C3—H3A0.9700N2—H20.91 (7)
C3—H3B0.9700B1—F11.361 (9)
C4—N21.483 (7)B1—F21.371 (9)
C4—H4A0.9700B1—F31.377 (9)
C4—H4B0.9700B1—F41.393 (9)
C5—C61.500 (7)B1'—F1'1.354 (19)
C5—N11.502 (6)B1'—F2'1.364 (19)
C5—H5A0.9700B1'—F3'1.370 (19)
C5—H5B0.9700B1'—F4'1.388 (19)
C6—N21.484 (7)
C2—C1—Br1106.1 (4)N1—C7—C8109.7 (4)
C2—C1—H1A110.5N1—C7—H7A109.7
Br1—C1—H1A110.5C8—C7—H7A109.7
C2—C1—H1B110.5N1—C7—H7B109.7
Br1—C1—H1B110.5C8—C7—H7B109.7
H1A—C1—H1B108.7H7A—C7—H7B108.2
C1—C2—N1114.4 (4)N2—C8—C7108.9 (4)
C1—C2—H2A108.7N2—C8—H8A109.9
N1—C2—H2A108.7C7—C8—H8A109.9
C1—C2—H2B108.7N2—C8—H8B109.9
N1—C2—H2B108.7C7—C8—H8B109.9
H2A—C2—H2B107.6H8A—C8—H8B108.3
N1—C3—C4110.1 (4)C3—N1—C5108.8 (4)
N1—C3—H3A109.6C3—N1—C7108.5 (4)
C4—C3—H3A109.6C5—N1—C7107.9 (4)
N1—C3—H3B109.6C3—N1—C2111.2 (4)
C4—C3—H3B109.6C5—N1—C2112.3 (4)
H3A—C3—H3B108.2C7—N1—C2108.0 (4)
N2—C4—C3108.8 (4)C8—N2—C4110.7 (5)
N2—C4—H4A109.9C8—N2—C6109.7 (5)
C3—C4—H4A109.9C4—N2—C6109.7 (4)
N2—C4—H4B109.9C8—N2—H2108 (4)
C3—C4—H4B109.9C4—N2—H2106 (4)
H4A—C4—H4B108.3C6—N2—H2113 (4)
C6—C5—N1109.6 (4)F1—B1—F2110.1 (7)
C6—C5—H5A109.8F1—B1—F3109.0 (7)
N1—C5—H5A109.8F2—B1—F3108.8 (7)
C6—C5—H5B109.8F1—B1—F4110.4 (7)
N1—C5—H5B109.8F2—B1—F4110.1 (7)
H5A—C5—H5B108.2F3—B1—F4108.3 (7)
N2—C6—C5109.7 (4)F1'—B1'—F2'112 (2)
N2—C6—H6A109.7F1'—B1'—F3'109 (2)
C5—C6—H6A109.7F2'—B1'—F3'109 (2)
N2—C6—H6B109.7F1'—B1'—F4'111 (2)
C5—C6—H6B109.7F2'—B1'—F4'106 (2)
H6A—C6—H6B108.2F3'—B1'—F4'109 (2)
Br1—C1—C2—N1−179.9 (4)C8—C7—N1—C563.8 (6)
N1—C3—C4—N2−8.1 (7)C8—C7—N1—C2−174.6 (5)
N1—C5—C6—N2−7.7 (6)C1—C2—N1—C370.8 (6)
N1—C7—C8—N2−7.9 (7)C1—C2—N1—C5−51.3 (6)
C4—C3—N1—C5−54.1 (6)C1—C2—N1—C7−170.2 (5)
C4—C3—N1—C763.1 (6)C7—C8—N2—C465.3 (6)
C4—C3—N1—C2−178.3 (5)C7—C8—N2—C6−55.8 (6)
C6—C5—N1—C363.3 (6)C3—C4—N2—C8−56.3 (6)
C6—C5—N1—C7−54.3 (6)C3—C4—N2—C664.9 (6)
C6—C5—N1—C2−173.2 (4)C5—C6—N2—C865.9 (6)
C8—C7—N1—C3−53.9 (6)C5—C6—N2—C4−55.9 (6)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2···Br20.91 (7)2.23 (7)3.141 (5)176 (6)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2032).

References

  • Chen, L.-Z., Zhao, H., Ge, J.-Z., Wu, D.-H. & Xiong, R.-G. (2009). Cryst. Growth Des.9, 3828–3831.
  • Fu, D.-W., Ge, J.-Z., Dai, J., Ye, H.-Y. & Qu, Z.-R. (2009). Inorg. Chem. Commun.12, 994–997.
  • Rigaku (2005). CrystalClear Rigaku Corporation, Tokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev.37, 84–100. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography