PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1471.
Published online 2010 May 26. doi:  10.1107/S1600536810019215
PMCID: PMC2979571

N′-(4-Cyano­benzyl­idene)thio­phene-2-carbohydrazide

Abstract

The title compound, C13H9N3OS, was prepared by the reaction of thio­phene-2-carbohydrazide and 4-formyl­benzonitrile. The dihedral angle between the benzene and thio­phene rings is 11.9 (1)°. In the crystal structure, mol­ecules are linked into centrosymmetric dimers by pairs of N—H(...)O hydrogen bonds.

Related literature

For related structures, see: Girgis (2006 [triangle]); Jiang (2010 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1471-scheme1.jpg

Experimental

Crystal data

  • C13H9N3OS
  • M r = 255.29
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1471-efi1.jpg
  • a = 6.3966 (13) Å
  • b = 16.340 (3) Å
  • c = 11.494 (2) Å
  • β = 90.66 (3)°
  • V = 1201.3 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.26 mm−1
  • T = 293 K
  • 0.21 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • 11589 measured reflections
  • 2746 independent reflections
  • 1539 reflections with I > 2σ(I)
  • R int = 0.066

Refinement

  • R[F 2 > 2σ(F 2)] = 0.046
  • wR(F 2) = 0.145
  • S = 1.03
  • 2746 reflections
  • 163 parameters
  • H-atom parameters constrained
  • Δρmax = 0.23 e Å−3
  • Δρmin = −0.32 e Å−3

Data collection: SMART (Bruker, 1997 [triangle]); cell refinement: SAINT (Bruker, 1997 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019215/lh5046sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019215/lh5046Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

General background references for the title compound are included in the publication of a related structure (Jiang, 2010). As part of our search for new schiff base compounds we synthesized the title compound (I), and describe its structure here.

The molcular structure of (I) is shown in Fig. 1. The C8═N3 bond length of 1.272 (3)Å is comparable with reported values [1.281 (2) Å] (Girgis, 2006) and [1.273 (3)Å] (Jiang, 2010). In the crystal structure, molecules are linked by intermolecular N—H···O hydrogen bonds into centrosymmetric dimers.

Experimental

A mixture of the thiophene-2-carbohydrazide (0.10 mol), and 4-formylbenzonitrile (0.10 mol) was stirred in refluxing ethanol (10 mL) for 4 h to afford the title compound (0.079 mol, yield 79%). Single crystals suitable for X-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

H atoms were fixed geometrically and allowed to ride on their attached atoms, with C—H distances = 0.93-0.97 Å; N—H = 0.86Å and with Uiso(H) = 1.2Ueq(C,N) or 1.5Ueq(Cmethyl).

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C13H9N3OSF(000) = 528
Mr = 255.29Dx = 1.412 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1539 reflections
a = 6.3966 (13) Åθ = 3.8–26.2°
b = 16.340 (3) ŵ = 0.26 mm1
c = 11.494 (2) ÅT = 293 K
β = 90.66 (3)°Block, colorless
V = 1201.3 (4) Å30.21 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer1539 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.066
graphiteθmax = 27.5°, θmin = 3.1°
[var phi] and ω scansh = −8→8
11589 measured reflectionsk = −21→21
2746 independent reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.145H-atom parameters constrained
S = 1.03w = 1/[σ2(Fo2) + (0.0682P)2] where P = (Fo2 + 2Fc2)/3
2746 reflections(Δ/σ)max < 0.001
163 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = −0.31 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
N30.2706 (3)0.38738 (12)0.84452 (15)0.0428 (5)
N20.1294 (3)0.44128 (12)0.88894 (14)0.0440 (5)
H2A0.14990.46030.95790.053*
O1−0.1694 (3)0.51089 (11)0.87605 (12)0.0542 (5)
C20.8862 (4)0.20156 (14)0.79598 (18)0.0444 (6)
C9−0.0408 (4)0.46559 (14)0.82840 (17)0.0421 (6)
C40.7596 (4)0.29587 (15)0.93785 (18)0.0463 (6)
H4A0.77590.32241.00890.056*
C80.4290 (4)0.37040 (14)0.90796 (18)0.0430 (6)
H8A0.44570.39600.97970.052*
C70.7082 (4)0.21428 (16)0.72907 (19)0.0535 (7)
H7A0.68950.18580.65970.064*
C50.5847 (4)0.31123 (13)0.86961 (17)0.0408 (6)
C10−0.0772 (4)0.43914 (14)0.70730 (17)0.0431 (6)
C30.9102 (4)0.24155 (15)0.90156 (19)0.0487 (6)
H3B1.02780.23180.94790.058*
C13−0.0822 (5)0.38914 (16)0.5070 (2)0.0600 (8)
H13A−0.05680.36640.43440.072*
C60.5585 (4)0.26912 (15)0.76500 (19)0.0505 (6)
H6A0.43970.27800.71930.061*
C11−0.2581 (4)0.45925 (15)0.64795 (18)0.0514 (7)
H11A−0.36730.48880.68020.062*
C12−0.2588 (5)0.43005 (16)0.5330 (2)0.0595 (7)
H12A−0.36880.43800.48060.071*
S10.08838 (11)0.38350 (4)0.62050 (5)0.0558 (3)
N11.1789 (4)0.10803 (16)0.7206 (2)0.0703 (7)
C11.0483 (4)0.14800 (17)0.7545 (2)0.0516 (6)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
N30.0461 (13)0.0436 (12)0.0388 (9)0.0034 (10)0.0026 (9)−0.0032 (8)
N20.0477 (13)0.0492 (12)0.0351 (9)0.0055 (10)−0.0021 (9)−0.0080 (8)
O10.0571 (12)0.0630 (12)0.0425 (8)0.0186 (9)−0.0023 (8)−0.0126 (8)
C20.0460 (15)0.0440 (14)0.0432 (11)0.0022 (11)0.0034 (11)0.0055 (10)
C90.0471 (15)0.0414 (13)0.0376 (11)0.0018 (11)−0.0021 (11)−0.0001 (10)
C40.0514 (16)0.0490 (14)0.0384 (11)−0.0003 (12)−0.0013 (11)−0.0017 (10)
C80.0459 (15)0.0463 (14)0.0369 (11)−0.0016 (11)−0.0012 (10)0.0013 (10)
C70.0612 (18)0.0539 (16)0.0452 (12)0.0049 (13)−0.0047 (12)−0.0094 (11)
C50.0435 (15)0.0404 (13)0.0385 (11)−0.0002 (11)0.0022 (10)0.0036 (9)
C100.0507 (15)0.0401 (13)0.0386 (11)0.0018 (11)0.0006 (10)−0.0024 (9)
C30.0464 (16)0.0517 (15)0.0478 (12)0.0026 (12)−0.0026 (11)0.0065 (11)
C130.081 (2)0.0600 (18)0.0391 (12)0.0101 (16)−0.0040 (13)−0.0079 (11)
C60.0496 (16)0.0538 (16)0.0478 (12)0.0066 (13)−0.0063 (11)−0.0027 (11)
C110.0591 (18)0.0528 (16)0.0420 (12)0.0071 (13)−0.0077 (11)−0.0061 (11)
C120.071 (2)0.0596 (17)0.0477 (13)0.0082 (15)−0.0166 (13)−0.0056 (12)
S10.0620 (5)0.0646 (5)0.0407 (3)0.0109 (3)−0.0001 (3)−0.0088 (3)
N10.0686 (18)0.0765 (17)0.0658 (14)0.0177 (14)0.0068 (13)−0.0044 (12)
C10.0534 (17)0.0544 (16)0.0471 (13)0.0029 (13)0.0009 (12)0.0027 (12)

Geometric parameters (Å, °)

N3—C81.272 (3)C7—C61.378 (3)
N3—N21.365 (2)C7—H7A0.9300
N2—C91.345 (3)C5—C61.394 (3)
N2—H2A0.8600C10—C111.376 (3)
O1—C91.239 (3)C10—S11.723 (2)
C2—C71.382 (3)C3—H3B0.9300
C2—C31.385 (3)C13—C121.349 (4)
C2—C11.442 (4)C13—S11.693 (3)
C9—C101.474 (3)C13—H13A0.9300
C4—C31.378 (3)C6—H6A0.9300
C4—C51.382 (3)C11—C121.405 (3)
C4—H4A0.9300C11—H11A0.9300
C8—C51.460 (3)C12—H12A0.9300
C8—H8A0.9300N1—C11.133 (3)
C8—N3—N2116.90 (18)C6—C5—C8120.8 (2)
C9—N2—N3122.15 (18)C11—C10—C9121.4 (2)
C9—N2—H2A118.9C11—C10—S1110.98 (16)
N3—N2—H2A118.9C9—C10—S1127.61 (19)
C7—C2—C3119.9 (2)C4—C3—C2119.9 (2)
C7—C2—C1119.9 (2)C4—C3—H3B120.1
C3—C2—C1120.2 (2)C2—C3—H3B120.1
O1—C9—N2119.03 (19)C12—C13—S1112.96 (18)
O1—C9—C10119.6 (2)C12—C13—H13A123.5
N2—C9—C10121.3 (2)S1—C13—H13A123.5
C3—C4—C5120.6 (2)C7—C6—C5120.1 (2)
C3—C4—H4A119.7C7—C6—H6A119.9
C5—C4—H4A119.7C5—C6—H6A119.9
N3—C8—C5120.9 (2)C10—C11—C12112.2 (2)
N3—C8—H8A119.6C10—C11—H11A123.9
C5—C8—H8A119.6C12—C11—H11A123.9
C6—C7—C2120.1 (2)C13—C12—C11112.5 (3)
C6—C7—H7A119.9C13—C12—H12A123.7
C2—C7—H7A119.9C11—C12—H12A123.7
C4—C5—C6119.2 (2)C13—S1—C1091.29 (13)
C4—C5—C8120.0 (2)N1—C1—C2177.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.972.821 (2)171

Symmetry codes: (i) −x, −y+1, −z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5046).

References

  • Bruker (1997). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Girgis, A. S. (2006). J. Chem. Res pp. 81–85.
  • Jiang, J.-H. (2010). Acta Cryst. E66, o922. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography