PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m638–m639.
Published online 2010 May 12. doi:  10.1107/S1600536810016533
PMCID: PMC2979570

Dichlorido(4,7-diaza-1-azoniacyclo­nonane-κ2 N 4,N 7)palladium(II) p-toluene­sulfonate

Abstract

The title compound, [PdCl2(C6H16N3)](C7H7SO3), consists of a PdII atom bonded to two N atoms of the 1,4,7-triaza­cyclo­nonane (TACN) ligand and two chloride ions, which define a distorted square-planar geometry. The third N atom of the TACN ligand is protonated and hydrogen bonds to the p-toluene­sulfonate anion. The Cl—Pd—Cl angle is larger than the N—Pd—N angle. The packing is dominated by layers, which are formed by the criss-crossing of two different hydrogen-bonded chains. One chain is composed of hydrogen-bonded Pd(TACNH)Cl2 + cations, while the second is formed through hydrogen bonding between the p-toluene­sulfonate anion and the Pd(TACNH)Cl2 + cation.

Related literature

For background to complexes of PdII and PtII with 1,4,7-triaza­cyclo­nonane (TACN), see: McAuley & Whitcombe (1988 [triangle]); Blake et al. (1988 [triangle], 1993 [triangle]); Margulis & Zompa (1992 [triangle]); Hunter et al. (1988 [triangle]); Davies et al. (2000 [triangle]). For the synthesis of TACN, see: Kang & Jo (2003 [triangle]). For Pd—N and Pd—Cl bond distances in Pd(en)Cl2, see: Iball et al. (1975 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m638-scheme1.jpg

Experimental

Crystal data

  • [PdCl2(C6H16N3)](C7H7O3S)
  • M r = 478.70
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m638-efi1.jpg
  • a = 6.6663 (11) Å
  • b = 7.0023 (11) Å
  • c = 19.646 (3) Å
  • α = 92.149 (3)°
  • β = 92.301 (3)°
  • γ = 103.084 (4)°
  • V = 891.5 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.47 mm−1
  • T = 98 K
  • 0.39 × 0.25 × 0.14 mm

Data collection

  • Rigaku AFC12 Kappa goniometer diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.839, T max = 1.000
  • 6224 measured reflections
  • 3998 independent reflections
  • 3941 reflections with I > 2σ(I)
  • R int = 0.018

Refinement

  • R[F 2 > 2σ(F 2)] = 0.029
  • wR(F 2) = 0.067
  • S = 1.00
  • 3998 reflections
  • 220 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.62 e Å−3
  • Δρmin = −0.98 e Å−3

Data collection: CrystalClear (Rigaku/MSC, 2005 [triangle]); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEPII (Johnson, 1976 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016533/tk2666sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016533/tk2666Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Support from the Department of Chemistry at The University of Texas is gratefully acknowledged.

supplementary crystallographic information

Comment

Complexes of PdII and PtII with 1,4,7,-triazacyclononane (TACN) have been reported in which the metal ion is coordinated to all three of the TACN nitrogen atoms (McAuley & Whitcombe, 1988) or to only two of the N atoms (Blake et al., 1988; Blake et al., 1993; Margulis & Zompa, 1992; Hunter et al., 1988). In the latter case, under acidic conditions, the non-Pd bonded N atom becomes protonated. As a result, hydrogen bonding networks can be formed in the presence of an acceptor site. A similar type of complex has been reported for PtII (Davies et al., 2000).

The title salt is comprised of a protonated Pd(TACNH)Cl2+ cation and a p-toluenesulfonate ion, Fig. 1. The Pd—N and Pd—Cl bond distances, Table 1, are similar to the bond distances observed in Pd(en)Cl2 of 1.9798 (7) and 2.3084 (8) Å for Pd—N and Pd—Cl bonds, respectively (Iball et al., 1975). The geometry about the PdIIatom is essentially square planar, but with the Cl1—Pd—Cl2 bond angle larger than the N1—Pd—N2 bond angle., Table 1 The dimer associates into a supramolecular chain via a nine member, ···O1—S1—O2···H3a—N3—C—C—N1—H1a···, synthon, Fig 2. A second hydrogen bonded chain is observed that is formed between protonated Pd(TACNH)Cl2+ cations. These chains are composed of a seven member, ···Cl2—Pd—N1—C—C—N3—H3d···, repeat unit involving the protonated N atom, Fig 3. Hydrogen bonding distances are given in Table 1. These two hydrogen bonded chains are situated approximately perpendicular to one another which allows for the formation of 2-D hydrogen bonded layers, Fig 4.

Experimental

The ligand (TACN) was prepared according to the procedure reported in the literature (Kang & Jo, 2003). K2PdCl4 (0.126 g, 0.387 mmol) was dissolved in deionized H2O (20 ml) and heated to 343 K. TACN (0.0500 g, 0.387 mmol) was dissolved in 50% 2-propanol/50% water solution (20 ml) and heated to 343 K. The two hot solutions were combined, removed from the heat and allowed to stir for 48 h. Yellow-brown crystals precipitated and were isolated by suction filtration. These were recrystallized from a 50% 2-propanol/50% water mixture to obtain crystals suitable for X-ray analysis.

Refinement

Carbon-bound H-atoms were placed in calculated positions(C—H 0.93 - 0.97 Å) and were included in the refinement in the riding model approximation with Uiso(H) set to 1.2-1.5 Ueq(C). The nitrogen-bound H-atoms were located in a difference Fourier map and were refined with Uiso(H) = 1.2Ueq(N).

Figures

Fig. 1.
Thermal ellipsoid plot (50% probability) of the asymmetric unit of the title salt. Carbon bound hydrogen atoms are removed for clarity.
Fig. 2.
Hydrogen bonded chain formed between the protonated Pd(TACNH)Cl2+ cation and the p-toluenesulfonate anion; non-participating hydrogen atoms have been removed for clarity. Thermal ellipsoids are shown at 50% probability.
Fig. 3.
Hydrogen bonded chain formed between protonated Pd(TACNH)Cl2+ ions; non- participating hydrogen atoms have been removed for clarity. Thermal ellipsoids are shown at 50% probability.
Fig. 4.
Illustration of the hydrogen bonded layer (view down the c axis); non-participating hydrogen atoms have been removed for clarity. Thermal ellipsoids are shown at 50% probability.

Crystal data

[PdCl2(C6H16N3)](C7H7O3S)Z = 2
Mr = 478.70F(000) = 484
Triclinic, P1Dx = 1.783 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.6663 (11) ÅCell parameters from 4441 reflections
b = 7.0023 (11) Åθ = 3.0–40.2°
c = 19.646 (3) ŵ = 1.47 mm1
α = 92.149 (3)°T = 98 K
β = 92.301 (3)°Prism, orange
γ = 103.084 (4)°0.39 × 0.25 × 0.14 mm
V = 891.5 (2) Å3

Data collection

Rigaku AFC12 Kappa goniometer diffractometer3998 independent reflections
Radiation source: sealed tube3941 reflections with I > 2σ(I)
graphiteRint = 0.018
Detector resolution: 14.286 pixels mm-1θmax = 27.5°, θmin = 3.0°
ω scansh = −8→8
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)k = −9→8
Tmin = 0.839, Tmax = 1.000l = −25→24
6224 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.067H atoms treated by a mixture of independent and constrained refinement
S = 1.00w = 1/[σ2(Fo2) + (0.007P)2 + 4.1P] where P = (Fo2 + 2Fc2)/3
3998 reflections(Δ/σ)max = 0.001
220 parametersΔρmax = 0.62 e Å3
0 restraintsΔρmin = −0.98 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Pd10.97009 (3)1.13904 (3)0.126918 (10)0.00972 (6)
Cl20.84514 (10)1.25666 (9)0.02940 (3)0.01338 (13)
Cl11.31092 (10)1.25684 (10)0.10367 (3)0.01477 (13)
N11.0477 (4)1.0307 (3)0.21612 (12)0.0107 (4)
N20.6749 (3)1.0232 (3)0.15540 (12)0.0119 (4)
N30.8065 (4)0.6217 (4)0.12108 (13)0.0131 (5)
C51.0277 (4)0.7097 (4)0.14512 (15)0.0135 (5)
H5A1.09020.79780.11100.016*
H5B1.10000.60420.14650.016*
C40.6940 (4)0.7353 (4)0.07501 (14)0.0133 (5)
H4A0.60680.64280.04220.016*
H4B0.79540.82250.04970.016*
C61.0657 (4)0.8215 (4)0.21375 (14)0.0125 (5)
H6A0.96930.75110.24490.015*
H6B1.20320.81870.23110.015*
C30.5617 (4)0.8563 (4)0.10909 (15)0.0139 (5)
H3B0.48580.90820.07390.017*
H3C0.46160.77000.13520.017*
C20.6799 (4)0.9703 (4)0.22882 (14)0.0150 (5)
H2B0.65670.82900.23150.018*
H2C0.57151.01370.25220.018*
C10.8864 (4)1.0674 (4)0.26239 (14)0.0143 (5)
H1B0.89751.20730.26940.017*
H1C0.90361.01280.30630.017*
S10.48600 (10)0.43932 (10)0.28213 (3)0.01295 (14)
O10.3964 (3)0.2362 (3)0.29720 (10)0.0153 (4)
O20.6622 (3)0.4531 (3)0.23865 (10)0.0162 (4)
O30.3348 (4)0.5425 (3)0.25768 (12)0.0240 (5)
C70.5938 (5)0.5596 (4)0.36084 (15)0.0168 (6)
C80.7933 (5)0.5552 (5)0.38198 (17)0.0244 (7)
H8A0.87250.49370.35450.029*
C90.8743 (6)0.6442 (5)0.44501 (18)0.0316 (8)
H9A1.00870.64220.45900.038*
C120.4771 (6)0.6539 (5)0.40103 (18)0.0286 (7)
H12A0.34470.66020.38610.034*
C110.5605 (6)0.7399 (6)0.4645 (2)0.0373 (9)
H11A0.48110.80140.49190.045*
C100.7584 (6)0.7355 (5)0.48716 (17)0.0329 (9)
C130.8478 (8)0.8282 (7)0.55589 (19)0.0492 (13)
H13A0.74740.88420.57810.074*
H13B0.96860.92930.54960.074*
H13C0.88420.72990.58360.074*
H1A1.158 (8)1.102 (8)0.230 (3)0.059*
H2A0.624 (8)1.114 (8)0.151 (3)0.059*
H3A0.742 (8)0.592 (8)0.151 (3)0.059*
H3D0.809 (8)0.516 (8)0.100 (3)0.059*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Pd10.00972 (10)0.00856 (10)0.01090 (11)0.00177 (7)0.00143 (7)0.00151 (7)
Cl20.0159 (3)0.0127 (3)0.0122 (3)0.0043 (2)0.0012 (2)0.0019 (2)
Cl10.0111 (3)0.0167 (3)0.0161 (3)0.0015 (2)0.0024 (2)0.0038 (2)
N10.0111 (11)0.0110 (11)0.0091 (11)0.0001 (8)0.0017 (8)0.0009 (8)
N20.0092 (10)0.0109 (11)0.0162 (12)0.0035 (8)0.0025 (8)0.0011 (9)
N30.0149 (11)0.0112 (11)0.0130 (12)0.0024 (9)0.0021 (9)0.0012 (9)
C50.0099 (12)0.0132 (13)0.0180 (14)0.0033 (10)0.0018 (10)0.0020 (10)
C40.0147 (13)0.0126 (12)0.0118 (13)0.0019 (10)−0.0008 (10)0.0000 (10)
C60.0120 (12)0.0114 (12)0.0145 (13)0.0032 (10)0.0009 (10)0.0030 (10)
C30.0103 (12)0.0135 (13)0.0171 (14)0.0009 (10)0.0007 (10)0.0006 (10)
C20.0159 (13)0.0154 (13)0.0140 (13)0.0032 (11)0.0049 (10)0.0028 (10)
C10.0167 (13)0.0149 (13)0.0117 (13)0.0043 (11)0.0049 (10)−0.0007 (10)
S10.0134 (3)0.0117 (3)0.0133 (3)0.0020 (2)0.0007 (2)0.0011 (2)
O10.0175 (10)0.0135 (9)0.0128 (10)−0.0013 (8)0.0019 (8)0.0007 (7)
O20.0141 (10)0.0204 (10)0.0132 (10)0.0018 (8)0.0024 (7)0.0027 (8)
O30.0238 (11)0.0224 (11)0.0288 (12)0.0118 (9)−0.0025 (9)0.0027 (9)
C70.0227 (15)0.0121 (13)0.0132 (13)−0.0012 (11)0.0032 (11)0.0002 (10)
C80.0283 (17)0.0235 (16)0.0201 (16)0.0042 (13)−0.0022 (13)−0.0014 (12)
C90.0343 (19)0.0331 (19)0.0211 (17)−0.0046 (15)−0.0055 (14)0.0012 (14)
C120.0277 (17)0.0256 (17)0.0291 (18)−0.0008 (14)0.0098 (14)−0.0090 (14)
C110.046 (2)0.0320 (19)0.0274 (19)−0.0054 (17)0.0191 (17)−0.0105 (15)
C100.047 (2)0.0265 (17)0.0144 (16)−0.0148 (15)0.0065 (14)−0.0030 (13)
C130.068 (3)0.044 (2)0.0176 (18)−0.024 (2)0.0062 (18)−0.0074 (16)

Geometric parameters (Å, °)

Pd1—N12.030 (2)C2—C11.504 (4)
Pd1—N22.060 (2)C2—H2B0.9700
Pd1—Cl12.3053 (8)C2—H2C0.9700
Pd1—Cl22.3115 (7)C1—H1B0.9700
N1—C11.495 (3)C1—H1C0.9700
N1—C61.495 (3)S1—O31.444 (2)
N1—H1A0.82 (5)S1—O11.459 (2)
N2—C31.493 (3)S1—O21.468 (2)
N2—C21.504 (4)S1—C71.777 (3)
N2—H2A0.79 (5)C7—C121.381 (4)
N3—C41.511 (4)C7—C81.385 (5)
N3—C51.512 (4)C8—C91.396 (5)
N3—H3A0.76 (6)C8—H8A0.9300
N3—H3D0.83 (6)C9—C101.388 (6)
C5—C61.516 (4)C9—H9A0.9300
C5—H5A0.9700C12—C111.400 (5)
C5—H5B0.9700C12—H12A0.9300
C4—C31.512 (4)C11—C101.383 (6)
C4—H4A0.9700C11—H11A0.9300
C4—H4B0.9700C10—C131.515 (5)
C6—H6A0.9700C13—H13A0.9600
C6—H6B0.9700C13—H13B0.9600
C3—H3B0.9700C13—H13C0.9600
C3—H3C0.9700
N1—Pd1—N282.71 (9)N2—C3—H3C108.4
N1—Pd1—Cl192.14 (7)C4—C3—H3C108.4
N2—Pd1—Cl1174.84 (7)H3B—C3—H3C107.4
N1—Pd1—Cl2173.69 (7)N2—C2—C1109.3 (2)
N2—Pd1—Cl291.14 (7)N2—C2—H2B109.8
Cl1—Pd1—Cl294.02 (3)C1—C2—H2B109.8
C1—N1—C6112.8 (2)N2—C2—H2C109.8
C1—N1—Pd1103.19 (17)C1—C2—H2C109.8
C6—N1—Pd1116.87 (17)H2B—C2—H2C108.3
C1—N1—H1A108 (4)N1—C1—C2107.4 (2)
C6—N1—H1A109 (4)N1—C1—H1B110.2
Pd1—N1—H1A106 (4)C2—C1—H1B110.2
C3—N2—C2112.6 (2)N1—C1—H1C110.2
C3—N2—Pd1113.10 (17)C2—C1—H1C110.2
C2—N2—Pd1109.76 (17)H1B—C1—H1C108.5
C3—N2—H2A109 (4)O3—S1—O1113.12 (13)
C2—N2—H2A110 (4)O3—S1—O2113.98 (13)
Pd1—N2—H2A101 (4)O1—S1—O2111.41 (12)
C4—N3—C5119.6 (2)O3—S1—C7106.63 (14)
C4—N3—H3A108 (4)O1—S1—C7106.18 (13)
C5—N3—H3A110 (4)O2—S1—C7104.72 (13)
C4—N3—H3D107 (4)C12—C7—C8120.5 (3)
C5—N3—H3D105 (4)C12—C7—S1119.9 (3)
H3A—N3—H3D105 (5)C8—C7—S1119.7 (2)
N3—C5—C6117.7 (2)C7—C8—C9119.3 (3)
N3—C5—H5A107.9C7—C8—H8A120.3
C6—C5—H5A107.9C9—C8—H8A120.3
N3—C5—H5B107.9C10—C9—C8121.4 (4)
C6—C5—H5B107.9C10—C9—H9A119.3
H5A—C5—H5B107.2C8—C9—H9A119.3
N3—C4—C3116.7 (2)C7—C12—C11119.3 (4)
N3—C4—H4A108.1C7—C12—H12A120.4
C3—C4—H4A108.1C11—C12—H12A120.4
N3—C4—H4B108.1C10—C11—C12121.4 (3)
C3—C4—H4B108.1C10—C11—H11A119.3
H4A—C4—H4B107.3C12—C11—H11A119.3
N1—C6—C5117.5 (2)C11—C10—C9118.1 (3)
N1—C6—H6A107.9C11—C10—C13121.3 (4)
C5—C6—H6A107.9C9—C10—C13120.6 (4)
N1—C6—H6B107.9C10—C13—H13A109.5
C5—C6—H6B107.9C10—C13—H13B109.5
H6A—C6—H6B107.2H13A—C13—H13B109.5
N2—C3—C4115.6 (2)C10—C13—H13C109.5
N2—C3—H3B108.4H13A—C13—H13C109.5
C4—C3—H3B108.4H13B—C13—H13C109.5

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1a···O1i0.82 (6)2.05 (6)2.833 (3)159 (6)
N2—H2a···Cl1ii0.79 (5)2.66 (6)3.365 (2)149 (5)
N3—H3a···O20.75 (6)2.04 (6)2.743 (3)156 (6)
N3—H3d···Cl2iii0.84 (5)2.31 (6)3.136 (3)171 (5)

Symmetry codes: (i) x+1, y+1, z; (ii) x−1, y, z; (iii) x, y−1, z.

Table 3 Bond distances and angles for hydrogen-bonding interactions (Å, °)

D···OX—D···AS=O···D
C1,C6—N1···O1i2.833 (3)97.42 (16), 104.83 (15)
N1—H1a···O1i2.05 (5)159 (5)
C4,C5—N3···O22.743 (3)125.55 (18), 99.40 (17)
N3—H3a···O22.04 (6)156 (6)
N3—H3d···Cl2ii2.31 (6)171 (5)
C4,C5—N3···Cl2ii3.136 (3)104.10 (16), 102.66 (16)
Pd—Cl2—H3diii85 (1)
Pd—Cl2—N3iii86.58 (5)
S1—O1···N1iv118.00 (12)
S1—O1···H1aiv113.3 (15)
S1—O2···N3139.70 (12)
S1—O2···H3a133.4 (16)

Symmetry codes: (i) 1+x, 1+y, z; (ii) x, -1+y, z; (iii) x, 1+y, z; (iv) -1+x, -1+y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: TK2666).

References

  • Blake, A. J., Gordon, L. M., Holder, A. J., Hyde, T. I., Reid, G. & Schröder, M. (1988). J. Chem. Soc. Chem. Commun. pp. 1452–1454..
  • Blake, A. J., Holder, A. J., Roberts, Y. V. & Schroder, M. (1993). J. Chem. Soc. Chem. Commun. pp. 260–262.
  • Davies, M. S., Fenton, R. R., Huq, F., Ling, E. C. H. & Hambley, T. W. (2000). Aust. J. Chem.53, 451–456.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hunter, G., McAuley, A. & Whitcombe, T. W. (1988). Inorg. Chem.27, 2634–2639.
  • Iball, J., MacDougall, M. & Scrimgeour, S. (1975). Acta Cryst. B31, 1672–1674.
  • Johnson, C. K. (1976). ORTEPII Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
  • Kang, J. & Jo, J. H. (2003). Bull. Korean Chem. Soc.24, 1403–1406.
  • Margulis, T. N. & Zompa, L. J. (1992). Inorg. Chim. Acta, 201, 61–67.
  • McAuley, A. & Whitcombe, T. W. (1988). Inorg. Chem.27, 3090–3099.
  • Rigaku/MSC (2005). CrystalClear Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography