PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m624–m625.
Published online 2010 May 8. doi:  10.1107/S160053681001620X
PMCID: PMC2979567

Triaqua­(1,4,7-triaza­cyclo­nonane-κ3 N 1,N 4,N 7)nickel(II) bromide nitrate

Abstract

In the title half-sandwich compound, [Ni(C6H15N3)(H2O)3]Br(NO3), the central NiII ion, lying on a threefold rotation axis, is six-coordinated by three amine N atoms from the face-capping triaza macrocycle and three water O atoms in a slightly distorted octa­hedral geometry. In the crystal, O—H(...)O hydrogen bonding and weak O—H(...)Br inter­actions associate the NiII cations and the counter-ions into a three-dimensional supra­molecular network.

Related literature

For the preparation of 1,4,7-triaza­cyclo­nonane trihydro­bromide, see: Koyama & Yoshino (1972 [triangle]). For the applications of metal complexes containing 1,4,7-triaza­cyclo­nonane as small-mol­ecule models of metalloenzymes and metalloproteins and as mol­ecule-based magnets, see: Berseth et al. (2000 [triangle]); Chaudhury et al. (1985 [triangle]); Cheng et al. (2004 [triangle]); Deal et al. (1996 [triangle]); Hegg & Burstyn (1995 [triangle]); Hegg et al. (1997 [triangle]); Lin et al. (2001 [triangle]); Poganiuch et al. (1991 [triangle]); Williams et al. (1999 [triangle]). For related NiII complexes with 1,4,7-triaza­cyclo­nonane, see: Bencini et al. (1990 [triangle]); Stranger et al. (1992 [triangle]); Wang et al. (2003 [triangle], 2005 [triangle]); Zompa & Margulis (1978 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m624-scheme1.jpg

Experimental

Crystal data

  • [Ni(C6H15N3)(H2O)3]Br(NO3)
  • M r = 383.89
  • Cubic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m624-efi5.jpg
  • a = 11.300 (1) Å
  • V = 1442.9 (3) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 4.14 mm−1
  • T = 298 K
  • 0.29 × 0.27 × 0.18 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 1998 [triangle]) T min = 0.320, T max = 0.480
  • 15223 measured reflections
  • 1110 independent reflections
  • 985 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.072
  • S = 1.03
  • 1110 reflections
  • 61 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.47 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 475 Friedel pairs
  • Flack parameter: 0.01 (3)

Data collection: APEX2 (Bruker, 2002 [triangle]); cell refinement: SAINT (Bruker, 2002 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001620X/pb2027sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001620X/pb2027Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors are grateful for financial support from the Guangxi Science Foundation (grant No. 0832023) and the Scientific Research Foundation of Guangxi Normal University.

supplementary crystallographic information

Comment

The coordination chemistry of 1,4,7–triazacyclononane (TACN) has been extensively studied for its applications in the simulation of metalloenzymes and metalloproteins (Chaudhury et al., 1985; Deal et al., 1996; Hegg & Burstyn, 1995; Hegg et al., 1997; Lin et al., 2001; Williams et al., 1999) as well as in constructing molecule–based magnetic materials (Berseth et al., 2000; Cheng et al., 2004; Poganiuch et al., 1991). In general, TACN ligand can form stable sandwich complexes with many transition metals (Stranger et al., 1992; Zompa & Margulis, 1978) or functions as a terminal chelator for the assembly of binuclear/polynuclear species and coordination polymers supported by bridging ligands (Bencini et al., 1990; Wang et al., 2005; Wang et al., 2003). In this paper, a half–sandwich type NiII complex with TACN has been synthesized and characterized.

In the selected crystal, the title compound (I) crystallizes in a chiral space group P213 and Flack parameter of 0.01 (3) indicates that a spontaneous resolution has been achieved during crystallization. As depicted in Fig. 1, the NiII center in the complex cation lies on a three–fold rotation axis and three amine N atoms from facially coordinated TACN and three water molecules complete the slightly distorted octahedral arrangement. Upon coordination, three five–membered Ni—N—C—C—N chelating rings subtended at metal center adopt (λλλ) conformation, which is the source of the chirality of the crystal. Ni—N [2.091 (3) Å] and Ni—O [2.089 (3) Å] bond lengths are both in the normal ranges, meanwhile N—Ni—N bond angle is smaller than that of O—Ni—O due to the small size of TACN ring. Counter–ions NO3- and Br- interconnect neighbouring cations by O—H···O hydrogen bond and O—H···Br- weak interaction (Table 1) into three–dimensional supramolecular network (Fig. 2).

Experimental

1,4,7–Triazacyclononane trihydrobromide (TACN.3HBr) was prepared by following a modified published method (Koyama & Yoshino, 1972).

To a solution of 0.074 g (0.02 mmol) of TACN.3HBr in water (10 ml), 0.1 M NaOH was added to adjust the pH to 6. Then aqueous solution (5 ml) of 0.058 g (0.02 mmol) of Ni(NO3)2.6H20 was added and the resulting mixture was stirred under reflux for 6 h. After cooling, the mixture was filtered, and the filtrate was allowed to standing at ambient temperature. Plate–like green single crystals suitable for X–ray crystallographic analysis were collected by slow evaporation of the filtrate within two months.

Refinement

All methylene H atoms were placed at calculated positions and refined as riding on their parent atoms [C—H = 0.97 Å and Uiso(H) = 1.2 Ueq(C)]. The H atoms of amine groups and water molecules were located in a difference Fourier map as riding atoms, with Uiso(H) = 1.5 Ueq(N) and 1.5 Ueq(O).

Figures

Fig. 1.
An ORTEP plot for the title compound (I) with the atom labelling scheme and 30% displacement ellipsoids. Symmetry codes: (i) y+1/2, -z+3/2, -x+2; (ii) -z+2, x-1/2, -y+3/2.
Fig. 2.
A view of the packing diagram of the title compound (I), showing the hydrogen–bonding supramolecular network. Hydrogen bonds are drawn in dashed lines. H atoms not involved in hydrogen bonds are omitted for clarity.

Crystal data

[Ni(C6H15N3)(H2O)3]Br(NO3)Dx = 1.767 Mg m3
Mr = 383.89Mo Kα radiation, λ = 0.71073 Å
Cubic, P213Cell parameters from 13409 reflections
Hall symbol: P 2ac 2ab 3θ = 3.1–27.4°
a = 11.300 (1) ŵ = 4.14 mm1
V = 1442.9 (3) Å3T = 298 K
Z = 4Plate, green
F(000) = 7840.29 × 0.27 × 0.18 mm

Data collection

Bruker APEXII CCD area-detector diffractometer1110 independent reflections
Radiation source: fine-focus sealed tube985 reflections with I > 2σ(I)
graphiteRint = 0.080
[var phi] and ω scansθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Bruker, 1998)h = −14→14
Tmin = 0.320, Tmax = 0.480k = −14→14
15223 measured reflectionsl = −14→14

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.072w = 1/[σ2(Fo2) + (0.0232P)2 + 1.6516P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
8717 reflectionsΔρmax = 0.36 e Å3
61 parametersΔρmin = −0.46 e Å3
0 restraintsAbsolute structure: Flack (1983), 475 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.01 (3)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Ni11.06169 (4)0.56169 (4)0.93831 (4)0.02729 (19)
Br10.25347 (4)0.24653 (4)0.75347 (4)0.0437 (2)
C10.8566 (4)0.4233 (4)0.8872 (4)0.0437 (11)
H1A0.81230.34980.88580.052*
H1B0.84380.46360.81250.052*
C21.0118 (4)0.3128 (4)0.9995 (4)0.0449 (11)
H2A1.03260.23650.96600.054*
H2B0.94170.30221.04780.054*
N10.9850 (3)0.3973 (3)0.9019 (3)0.0353 (8)
H31.02260.36310.84070.053*
N20.9466 (3)0.9466 (3)0.9466 (3)0.0316 (11)
O11.0196 (3)0.6447 (3)0.7786 (3)0.0391 (8)
O20.8854 (3)1.0345 (3)0.9196 (3)0.0577 (9)
H4B0.947 (5)0.659 (4)0.765 (4)0.050 (14)*
H4A1.040 (4)0.598 (4)0.723 (4)0.050 (14)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Ni10.02729 (19)0.02729 (19)0.02729 (19)−0.0011 (2)0.0011 (2)0.0011 (2)
Br10.0437 (2)0.0437 (2)0.0437 (2)−0.0012 (2)0.0012 (2)−0.0012 (2)
C10.041 (2)0.042 (3)0.049 (3)−0.016 (2)−0.009 (2)0.005 (2)
C20.054 (3)0.027 (2)0.054 (3)−0.0022 (19)0.010 (2)0.0063 (19)
N10.0365 (19)0.0349 (19)0.0346 (19)−0.0022 (14)0.0050 (14)−0.0021 (14)
N20.0316 (11)0.0316 (11)0.0316 (11)0.0002 (15)0.0002 (15)0.0002 (15)
O10.0424 (18)0.0419 (18)0.0330 (18)0.0052 (14)−0.0007 (13)0.0024 (12)
O20.055 (2)0.054 (2)0.065 (2)0.0156 (16)0.0149 (17)0.0133 (18)

Geometric parameters (Å, °)

Ni1—O1i2.089 (3)C2—N11.490 (5)
Ni1—O12.089 (3)C2—C1ii1.520 (6)
Ni1—O1ii2.089 (3)C2—H2A0.9700
Ni1—N12.091 (3)C2—H2B0.9700
Ni1—N1ii2.091 (3)N1—H30.8987
Ni1—N1i2.091 (3)N2—O2iii1.248 (3)
C1—N11.490 (6)N2—O2iv1.248 (3)
C1—C2i1.520 (6)N2—O21.248 (3)
C1—H1A0.9700O1—H4B0.85 (5)
C1—H1B0.9700O1—H4A0.84 (4)
O1i—Ni1—O184.90 (14)H1A—C1—H1B108.1
O1i—Ni1—O1ii84.90 (14)N1—C2—C1ii111.7 (3)
O1—Ni1—O1ii84.90 (14)N1—C2—H2A109.3
O1i—Ni1—N1177.00 (13)C1ii—C2—H2A109.3
O1—Ni1—N197.72 (13)N1—C2—H2B109.3
O1ii—Ni1—N193.87 (12)C1ii—C2—H2B109.3
O1i—Ni1—N1ii93.87 (12)H2A—C2—H2B108.0
O1—Ni1—N1ii177.00 (13)C1—N1—C2114.0 (3)
O1ii—Ni1—N1ii97.72 (12)C1—N1—Ni1104.5 (3)
N1—Ni1—N1ii83.58 (14)C2—N1—Ni1109.8 (3)
O1i—Ni1—N1i97.72 (12)C1—N1—H3117.3
O1—Ni1—N1i93.87 (12)C2—N1—H3101.4
O1ii—Ni1—N1i177.00 (13)Ni1—N1—H3109.7
N1—Ni1—N1i83.58 (14)O2iii—N2—O2iv119.999 (2)
N1ii—Ni1—N1i83.58 (14)O2iii—N2—O2120.000 (3)
N1—C1—C2i110.3 (4)O2iv—N2—O2120.000 (2)
N1—C1—H1A109.6Ni1—O1—H4B117 (4)
C2i—C1—H1A109.6Ni1—O1—H4A107 (4)
N1—C1—H1B109.6H4B—O1—H4A104 (5)
C2i—C1—H1B109.6
C2i—C1—N1—C272.1 (5)N1ii—Ni1—N1—C1114.6 (2)
C2i—C1—N1—Ni1−47.8 (4)N1i—Ni1—N1—C130.4 (3)
C1ii—C2—N1—C1−133.2 (4)O1—Ni1—N1—C2174.6 (3)
C1ii—C2—N1—Ni1−16.3 (4)O1ii—Ni1—N1—C289.3 (3)
O1—Ni1—N1—C1−62.7 (3)N1ii—Ni1—N1—C2−8.1 (3)
O1ii—Ni1—N1—C1−148.0 (3)N1i—Ni1—N1—C2−92.3 (2)

Symmetry codes: (i) y+1/2, −z+3/2, −x+2; (ii) −z+2, x−1/2, −y+3/2; (iii) z, x, y; (iv) y, z, x.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O1—H4A···O2v0.84 (4)1.95 (5)2.776 (5)162 (4)
O1—H4B···Br1vi0.85 (5)2.48 (5)3.312 (3)167 (4)

Symmetry codes: (v) −x+2, y−1/2, −z+3/2; (vi) −x+1, y+1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PB2027).

References

  • Bencini, A., Bianchi, A., Paoli, P., Garcia-Espana, E., Julve, M. & Marcelino, V. (1990). J. Chem. Soc. Dalton Trans. pp. 2213–2217.
  • Berseth, P. A., Sokol, J. J., Shores, M. P., Heinrich, J. L. & Long, J. R. (2000). J. Am. Chem. Soc.122, 9655–9662.
  • Bruker (1998). SADABS Bruker AXS inc., Madison, Wisconsin, USA.
  • Bruker (2002). APEX2 and SAINT Bruker AXS inc., Madison, Wisconsin, USA.
  • Chaudhury, P., Wieghardt, K., Nuber, B. & Weiss, J. (1985). Angew. Chem. Int. Ed. Engl.24, 778–779.
  • Cheng, P., Yan, S. P., Xie, C. Z., Zhao, B., Chen, X. Y., Liu, X. W., Li, C. H., Liao, D. Z., Jiang, Z. H. & Wang, G. L. (2004). Eur. J. Inorg. Chem. pp. 2369–2378.
  • Deal, K. A., Hengge, A. C. & Burstyn, J. N. (1996). J. Am. Chem. Soc.118, 1713–1718.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hegg, E. L. & Burstyn, J. N. (1995). J. Am. Chem. Soc.117, 7015–7016.
  • Hegg, E. L., Deal, K. A., Kiessling, L. L. & Burstyn, J. N. (1997). Inorg. Chem.36, 1715–1718. [PubMed]
  • Koyama, H. & Yoshino, T. (1972). Bully . Chem. Soc. Jpn, 45, 481–484.
  • Lin, G., Reid, G. & Bugg, T. D. H. (2001). J. Am. Chem. Soc.123, 5030–5039. [PubMed]
  • Poganiuch, P., Liu, S. C., Papaefthymiou, G. C. & Lippard, S. J. (1991). J. Am. Chem. Soc.113, 4645–4651.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Stranger, R., Wallis, S. C., Gahan, L. R., Kennard, C. H. L. & Byriel, K. A. (1992). J. Chem. Soc. Dalton Trans. pp. 2971–2976.
  • Wang, Z. D., Gao, F. X., Han, W., Xie, C. Z. & Yan, S. P. (2005). Ultramicroscopy, 38, 80–82.
  • Wang, Q. L., Yu, L. H., Liao, D. Z., Yan, S. P., Jiang, Z. H. & Cheng, P. (2003). Helv. Chim. Acta, 86, 2441–2451.
  • Williams, N. H., Lebuis, A. M. & Chin, J. (1999). J. Am. Chem. Soc.121, 3341–3348.
  • Zompa, L. J. & Margulis, T. N. (1978). Inorg. Chim. Acta, 28, L157–L159.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography