PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1450–o1451.
Published online 2010 May 26. doi:  10.1107/S1600536810018635
PMCID: PMC2979566

4-[(Dimethyl­amino)methyl­idene]-2-(4-nitro­phen­yl)-1,3-oxazol-5(4H)-one

Abstract

The title mol­ecule, C12H11N3O4, is essentially planar, the r.m.s. deviation for all non-H atoms being 0.068 Å. An intra­molecular C—H(...)N hydrogen bond occurs. The crystal packing is dominated by π–π inter­actions [shortest centroid–centroid distance = 3.6312 (16) Å], which lead to supra­molecular chains that are linked into a three-dimensional network via C—H(...)O contacts. The crystal was found to be a non-merohedral twin (twin law −1 0 0/0 −1 0/ 0.784 0 1), the fractional contribution of the minor component being approx­imately 22%.

Related literature

For the synthesis, synthetic uses and properties of 4-(N,N-di­methyl­amino­methyl­ene)-2-aryl-2-oxazolin-5-one derivatives, see: Singh & Singh (1994 [triangle], 2008 [triangle]); Takahashi & Izawa (2005 [triangle]); Singh et al. (1994 [triangle]); Kmetic & Stanovnik (1995 [triangle]). For the Vilsmeier–Haack reaction, see: Meth-Cohn & Stanforth (1991 [triangle]). For related structures, see Vasuki et al. (2002 [triangle]); Vijayalakshmi et al. (1998 [triangle]). For the treatment of twinned diffraction data, see: Spek (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1450-scheme1.jpg

Experimental

Crystal data

  • C12H11N3O4
  • M r = 261.24
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1450-efi1.jpg
  • a = 9.5313 (2) Å
  • b = 9.5204 (3) Å
  • c = 13.0349 (4) Å
  • β = 106.661 (2)°
  • V = 1133.15 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.12 mm−1
  • T = 120 K
  • 0.42 × 0.38 × 0.22 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.661, T max = 1.000
  • 14210 measured reflections
  • 2581 independent reflections
  • 2030 reflections with I > 2σ(I)
  • R int = 0.071

Refinement

  • R[F 2 > 2σ(F 2)] = 0.065
  • wR(F 2) = 0.220
  • S = 1.19
  • 2581 reflections
  • 176 parameters
  • H-atom parameters constrained
  • Δρmax = 0.33 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018635/ez2209sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018635/ez2209Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

supplementary crystallographic information

Comment

The preparations of 4-(N,N-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives have been reported using the Vilsmeier-Haack reactions (Meth-Cohn & Stanforth, 1991) of acylaminoacetanilides with POCl3 and DMF (Singh & Singh, 1994; Takahashi & Izawa, 2005; Singh et al., 1994; Kmetic & Stanovnik, 1995). The compounds have been used as precursors of 4-hydroxymethylene-2-aryl-2-oxazolin-5-one, which have been tested for anti-bacterial activities (Singh & Singh, 2008). The crystal structures of 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and 4-(N,N-dimethylaminomethylene)-2-(2-nitrophenyl)-2-oxazolin-5-one (Vijayalakshmi et al., 1998) have been reported. We now report the crystal structure of 4-(N,N-dimethylaminomethylene)-2-(4-nitrophenyl)-2-oxazolin-5-one, (I).

The molecule of (I), Fig. 1, is essentially planar with the maximum deviations from the least-squares plane through all non-hydrogen atoms being 0.157 (4) Å for atom C5 and -0.158 (3) for atom O4; the r.m.s. = 0.068 Å. The sequence of C1–N1, N1–C2, C2–C4, and C4–N2 bond distances of 1.289 (4), 1.398 (4), 1.382 (5), and 1.317 (4) Å, respectively, indicate substantial delocalisation of π-electron density over these atoms. The geometric parameters in (I) match closely those found in the parent compound, namely 4-(N,N-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki et al., 2002) and in the 2-nitro derivative (Vijayalakshmi et al., 1998).

The crystal packing is dominated by C–H···O and π–π interactions; the N1 atom of the oxazolin-5-one is involved in an intramolecular C–H···N contact that shields this atom from forming intermolecular interactions, Table 1. Columns of molecules orientated along the b axis are stabilised by π–π contacts with the shortest of these occurring between centrosymmetrically related benzene rings [ring centroid(C7–C12)···ring centroid(C7–C12)i = 3.6312 (16) Å for i: 1-x, 1-y, 2-z]. The benzene rings also form π–π interactions with the oxazolin-5-one rings [ring centroid(C7–C12)···ring centroid(O1,N1,C1–C3)ii = 3.7645 (17) Å for ii: 1-x, -y, 2-z] to form a supramolecular chain, Fig. 2. The chains are connected by a series of C–H···O contacts, Table 1, to form a 3-D network, Fig. 3.

Experimental

The title compound was prepared as per published procedures (Singh & Singh, 1994; Singh et al., 1994). Physical properties were in agreement with published data. The crystal used in the structure determination was grown from EtOH solution.

Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2–1.5Ueq(C). For the treatment of twinned diffraction data, see: Spek (2009).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of the supramolecular chain aligned along the b axis in (I) sustained by π–π intercations (purple dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.
Fig. 3.
View of the connections between chains in (I) with the C–H···O interactions shown as orange dashed lines. Colour code: O, red; N, blue; C, grey; and H, green.

Crystal data

C12H11N3O4F(000) = 544
Mr = 261.24Dx = 1.531 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 2714 reflections
a = 9.5313 (2) Åθ = 2.9–27.5°
b = 9.5204 (3) ŵ = 0.12 mm1
c = 13.0349 (4) ÅT = 120 K
β = 106.661 (2)°Block, red
V = 1133.15 (6) Å30.42 × 0.38 × 0.22 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer2581 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2030 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.071
Detector resolution: 9.091 pixels mm-1θmax = 27.4°, θmin = 3.1°
[var phi] and ω scansh = −12→12
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −12→11
Tmin = 0.661, Tmax = 1.000l = −16→16
14210 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.065H-atom parameters constrained
wR(F2) = 0.220w = 1/[σ2(Fo2) + (0.0936P)2 + 1.6594P] where P = (Fo2 + 2Fc2)/3
S = 1.19(Δ/σ)max = 0.001
2581 reflectionsΔρmax = 0.33 e Å3
176 parametersΔρmin = −0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.018 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O10.3806 (2)0.5986 (2)0.33548 (17)0.0197 (5)
O20.2556 (3)0.4481 (2)0.20576 (17)0.0239 (6)
O30.8419 (3)1.1001 (3)0.6327 (2)0.0324 (6)
O40.7443 (3)1.0746 (3)0.76142 (19)0.0307 (6)
N10.2875 (3)0.5457 (3)0.4711 (2)0.0180 (6)
N20.0528 (3)0.3059 (3)0.4441 (2)0.0203 (6)
N30.7556 (3)1.0430 (3)0.6733 (2)0.0209 (6)
C10.3786 (3)0.6220 (3)0.4393 (2)0.0166 (6)
C20.2186 (3)0.4617 (3)0.3831 (2)0.0179 (6)
C30.2761 (3)0.4921 (3)0.2958 (2)0.0195 (7)
C40.1130 (3)0.3590 (3)0.3735 (2)0.0189 (7)
H40.07780.31990.30380.023*
C50.0939 (4)0.3462 (4)0.5569 (3)0.0237 (7)
H5A0.13780.26550.60120.036*
H5B0.00660.37680.57610.036*
H5C0.16490.42330.56910.036*
C6−0.0548 (4)0.1947 (4)0.4138 (3)0.0284 (8)
H6A−0.07800.17780.33660.043*
H6B−0.14400.22230.43170.043*
H6C−0.01520.10860.45260.043*
C70.4765 (3)0.7290 (3)0.4994 (2)0.0168 (6)
C80.4797 (3)0.7571 (3)0.6051 (2)0.0184 (6)
H80.41840.70560.63750.022*
C90.5715 (3)0.8590 (3)0.6624 (2)0.0185 (6)
H90.57350.87940.73420.022*
C100.6608 (3)0.9314 (3)0.6135 (2)0.0178 (6)
C110.6608 (3)0.9058 (3)0.5089 (2)0.0173 (6)
H110.72310.95710.47720.021*
C120.5676 (3)0.8035 (3)0.4519 (2)0.0175 (6)
H120.56550.78380.38000.021*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0239 (12)0.0203 (11)0.0177 (11)−0.0022 (9)0.0105 (9)−0.0010 (8)
O20.0307 (13)0.0242 (12)0.0187 (11)−0.0017 (10)0.0100 (10)−0.0029 (9)
O30.0323 (14)0.0382 (15)0.0291 (13)−0.0147 (12)0.0127 (11)−0.0044 (11)
O40.0397 (15)0.0328 (14)0.0219 (12)−0.0061 (12)0.0125 (11)−0.0075 (10)
N10.0195 (13)0.0171 (12)0.0183 (13)0.0003 (10)0.0067 (10)0.0004 (10)
N20.0209 (13)0.0163 (13)0.0248 (13)0.0015 (11)0.0082 (11)0.0025 (10)
N30.0219 (13)0.0210 (13)0.0195 (13)0.0017 (12)0.0056 (11)0.0024 (11)
C10.0193 (14)0.0179 (14)0.0143 (13)0.0046 (12)0.0073 (11)0.0029 (11)
C20.0198 (15)0.0172 (14)0.0173 (14)0.0032 (12)0.0065 (12)0.0009 (11)
C30.0218 (15)0.0165 (14)0.0207 (15)0.0022 (12)0.0068 (12)0.0030 (12)
C40.0222 (16)0.0156 (14)0.0198 (15)0.0042 (12)0.0076 (12)0.0024 (11)
C50.0270 (17)0.0235 (16)0.0246 (16)0.0024 (14)0.0136 (14)0.0033 (13)
C60.0247 (17)0.0210 (16)0.039 (2)−0.0050 (14)0.0077 (15)0.0059 (14)
C70.0182 (15)0.0145 (14)0.0185 (14)0.0035 (12)0.0062 (12)0.0022 (11)
C80.0201 (15)0.0188 (15)0.0184 (14)0.0018 (12)0.0089 (12)0.0040 (12)
C90.0215 (15)0.0193 (15)0.0158 (13)0.0052 (13)0.0070 (12)0.0030 (12)
C100.0174 (14)0.0152 (14)0.0198 (15)0.0025 (12)0.0036 (12)−0.0005 (11)
C110.0180 (14)0.0175 (14)0.0178 (14)0.0023 (12)0.0073 (11)0.0035 (11)
C120.0193 (14)0.0184 (14)0.0169 (14)0.0029 (12)0.0086 (12)0.0014 (11)

Geometric parameters (Å, °)

O1—C11.377 (3)C5—H5B0.9800
O1—C31.411 (4)C5—H5C0.9800
O2—C31.209 (4)C6—H6A0.9800
O3—N31.226 (4)C6—H6B0.9800
O4—N31.222 (4)C6—H6C0.9800
N1—C11.289 (4)C7—C81.394 (4)
N1—C21.398 (4)C7—C121.396 (4)
N2—C41.317 (4)C8—C91.375 (4)
N2—C61.448 (4)C8—H80.9500
N2—C51.460 (4)C9—C101.385 (4)
N3—C101.466 (4)C9—H90.9500
C1—C71.450 (4)C10—C111.385 (4)
C2—C41.382 (5)C11—C121.383 (4)
C2—C31.428 (4)C11—H110.9500
C4—H40.9500C12—H120.9500
C5—H5A0.9800
C1—O1—C3105.6 (2)H5B—C5—H5C109.5
C1—N1—C2105.0 (2)N2—C6—H6A109.5
C4—N2—C6120.5 (3)N2—C6—H6B109.5
C4—N2—C5123.9 (3)H6A—C6—H6B109.5
C6—N2—C5115.5 (3)N2—C6—H6C109.5
O4—N3—O3123.2 (3)H6A—C6—H6C109.5
O4—N3—C10118.1 (3)H6B—C6—H6C109.5
O3—N3—C10118.7 (3)C8—C7—C12120.0 (3)
N1—C1—O1115.2 (3)C8—C7—C1119.8 (3)
N1—C1—C7127.6 (3)C12—C7—C1120.2 (3)
O1—C1—C7117.2 (3)C9—C8—C7120.2 (3)
C4—C2—N1129.6 (3)C9—C8—H8119.9
C4—C2—C3120.5 (3)C7—C8—H8119.9
N1—C2—C3109.9 (3)C8—C9—C10118.7 (3)
O2—C3—O1120.4 (3)C8—C9—H9120.7
O2—C3—C2135.4 (3)C10—C9—H9120.7
O1—C3—C2104.3 (2)C11—C10—C9122.7 (3)
N2—C4—C2131.3 (3)C11—C10—N3118.5 (3)
N2—C4—H4114.4C9—C10—N3118.8 (3)
C2—C4—H4114.4C12—C11—C10118.1 (3)
N2—C5—H5A109.5C12—C11—H11120.9
N2—C5—H5B109.5C10—C11—H11120.9
H5A—C5—H5B109.5C11—C12—C7120.4 (3)
N2—C5—H5C109.5C11—C12—H12119.8
H5A—C5—H5C109.5C7—C12—H12119.8
C2—N1—C1—O1−0.3 (3)O1—C1—C7—C8−179.8 (3)
C2—N1—C1—C7179.1 (3)N1—C1—C7—C12−179.3 (3)
C3—O1—C1—N1−0.1 (3)O1—C1—C7—C120.1 (4)
C3—O1—C1—C7−179.5 (3)C12—C7—C8—C90.6 (5)
C1—N1—C2—C4178.8 (3)C1—C7—C8—C9−179.5 (3)
C1—N1—C2—C30.5 (3)C7—C8—C9—C10−0.7 (5)
C1—O1—C3—O2−178.9 (3)C8—C9—C10—C110.4 (5)
C1—O1—C3—C20.4 (3)C8—C9—C10—N3178.2 (3)
C4—C2—C3—O20.1 (6)O4—N3—C10—C11172.7 (3)
N1—C2—C3—O2178.6 (4)O3—N3—C10—C11−7.1 (4)
C4—C2—C3—O1−179.1 (3)O4—N3—C10—C9−5.1 (4)
N1—C2—C3—O1−0.6 (3)O3—N3—C10—C9175.0 (3)
C6—N2—C4—C2−178.4 (3)C9—C10—C11—C12−0.1 (5)
C5—N2—C4—C2−2.4 (5)N3—C10—C11—C12−177.9 (3)
N1—C2—C4—N2−3.9 (6)C10—C11—C12—C70.1 (4)
C3—C2—C4—N2174.2 (3)C8—C7—C12—C11−0.3 (4)
N1—C1—C7—C80.9 (5)C1—C7—C12—C11179.8 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C5—H5c···N10.982.283.074 (5)137
C5—H5a···O2i0.982.533.504 (4)177
C5—H5c···O4ii0.982.573.259 (5)127
C9—H9···O1iii0.952.563.304 (4)135
C11—H11···O2iv0.952.453.144 (4)130

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, y−1/2, −z+3/2; (iii) x, −y+3/2, z+1/2; (iv) −x+1, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2209).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Kmetic, M. & Stanovnik, B. (1995). J. Heterocycl. Chem 32, 1563–1565.
  • Meth-Cohn, O. & Stanforth, S. P. (1991). Comp. Org. Synth 2, 777–794.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Singh, K. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 232–235.
  • Singh, V. K. & Singh, D. (2008). Asian J. Chem 20, 3349–3352.
  • Singh, K. K., Singh, M. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 1119–1122.
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Takahashi, D. & Izawa, K. (2005). Eur. Patent 2004-256811 20041104.
  • Vasuki, G., Thamotharan, S., Ramamurthi, K., Ambika, S. & Singh, R. M. (2002). Acta Cryst. E58, o740–o741.
  • Vijayalakshmi, L., Parthasarathi, V., Perumal, P. T. & Majo, V. J. (1998). Acta Cryst. C54, 1683–1685.
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography