PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1379.
Published online 2010 May 19. doi:  10.1107/S1600536810017587
PMCID: PMC2979555

2,3-(3,6,9-Trioxaundecane-1,11-diyl­disulfan­yl)-1,4,5,8-tetra­thia­fulvalene-6,7-dicarbonitrile

Abstract

In the title compound, C16H16N2O3S6, the two five-membered rings form a dihedral angle of 7.86 (9)°. Weak C—H(...)N hydrogen bonds link the mol­ecules to form a chain along c; the chains are further connected by weak C—H(...)O hydrogen bonds to form a three-dimensional supra­molecular network.

Related literature

For background to the use of dithiacrown ether annulated tetrathiafulvalenes as sensor molecules for various metal cations, see Moore et al. (2000 [triangle]); Otsubo & Ogura (1985 [triangle]). For the synthesis, see Yin et al. (2006 [triangle]). For a related structure, see Hou et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1379-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O3S6
  • M r = 476.67
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1379-efi1.jpg
  • a = 8.300 (5) Å
  • b = 9.186 (5) Å
  • c = 13.892 (10) Å
  • α = 100.42 (3)°
  • β = 92.31 (3)°
  • γ = 95.60 (2)°
  • V = 1035.0 (11) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.68 mm−1
  • T = 290 K
  • 0.13 × 0.12 × 0.10 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.917, T max = 0.935
  • 10214 measured reflections
  • 4702 independent reflections
  • 3936 reflections with I > 2σ(I)
  • R int = 0.026

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.088
  • S = 1.07
  • 4702 reflections
  • 245 parameters
  • H-atom parameters constrained
  • Δρmax = 0.52 e Å−3
  • Δρmin = −0.31 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017587/ng2773sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017587/ng2773Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

supplementary crystallographic information

Comment

Dithiacrown ether annulated tetrathiafulvalenes have received great attentions as sensors molecule for various metal cations (Otsubo et al., 1985; Moore et al., 2000). These sensors can recognize selectively the virous metal cations to singel electrochemical information. We incorpolated TTF with a 15-membered O, S hybrid crown ether to synthesize the title compound because it should be able to bind sodium ion (Yin et al., 2006). We report herein the synthesis and structure of the title compound.

The title compound, (I), as shown in Fig. 1, all bond lengths and angles are normal and comparable with those reported for the related structure (Hou et al., 2009). In the crystal, weak C—H···O hydrogen bonds (table 1) link the molecules into two-dimensional network in ac plane. The crystal structure is further stablized by weak C—H···N hydrogen bonds along c dirction.

Experimental

The title compound, (I), was prepared according to literature (Yin et al., 2006) and single crystals suitable for X-ray diffraction were prepared by slow evaporation a mixture of dichloromethane and petroleum (60-90 °C) at room temperature.

Refinement

Carbon-bound H-atoms were placed in calculated positions with C—H = 0.97 A and were included in the refinement in the riding model with Uiso(H) = 1.2 Ueq(C).

Figures

Fig. 1.
The asymmetric unit of the title compound, with the atom numbering. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.

Crystal data

C16H16N2O3S6Z = 2
Mr = 476.67F(000) = 492
Triclinic, P1Dx = 1.530 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.300 (5) ÅCell parameters from 8487 reflections
b = 9.186 (5) Åθ = 3.2–27.5°
c = 13.892 (10) ŵ = 0.68 mm1
α = 100.42 (3)°T = 290 K
β = 92.31 (3)°Block, black
γ = 95.60 (2)°0.13 × 0.12 × 0.10 mm
V = 1035.0 (11) Å3

Data collection

Rigaku R-AXIS RAPID diffractometer4702 independent reflections
Radiation source: fine-focus sealed tube3936 reflections with I > 2σ(I)
graphiteRint = 0.026
ω scansθmax = 27.5°, θmin = 3.2°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −10→10
Tmin = 0.917, Tmax = 0.935k = −10→11
10214 measured reflectionsl = −18→18

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.032H-atom parameters constrained
wR(F2) = 0.088w = 1/[σ2(Fo2) + (0.0449P)2 + 0.1948P] where P = (Fo2 + 2Fc2)/3
S = 1.07(Δ/σ)max = 0.001
4702 reflectionsΔρmax = 0.52 e Å3
245 parametersΔρmin = −0.30 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.027 (2)

Special details

Experimental. (See detailed section in the paper)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C1−0.1516 (2)0.9624 (2)−0.20634 (12)0.0455 (4)
C2−0.1520 (2)0.88171 (17)−0.12738 (11)0.0364 (3)
C3−0.2869 (2)0.84467 (18)−0.08319 (11)0.0377 (3)
C4−0.4436 (2)0.8829 (2)−0.10925 (13)0.0493 (4)
C5−0.05873 (19)0.74212 (17)0.00468 (11)0.0353 (3)
C60.02801 (19)0.68050 (18)0.06787 (11)0.0374 (3)
C70.2533 (2)0.60022 (18)0.17572 (11)0.0406 (4)
C80.5249 (2)0.7500 (2)0.28490 (13)0.0470 (4)
H8A0.64170.76290.28110.056*
H8B0.48030.82580.25480.056*
C90.4861 (2)0.77382 (19)0.39115 (12)0.0428 (4)
H9A0.52440.87480.42330.051*
H9B0.36990.75810.39670.051*
C100.5910 (3)0.7045 (3)0.53927 (15)0.0621 (5)
H10A0.65810.79900.55660.075*
H10B0.65200.62930.55960.075*
C110.4441 (3)0.7141 (2)0.59613 (16)0.0625 (5)
H11A0.35710.64230.56260.075*
H11B0.46670.69060.66030.075*
C120.2389 (2)0.8716 (2)0.64099 (13)0.0506 (4)
H12A0.23960.96320.68840.061*
H12B0.20880.78920.67380.061*
C130.1159 (2)0.87039 (19)0.55895 (14)0.0499 (4)
H13A0.01660.90380.58530.060*
H13B0.15660.93780.51710.060*
C14−0.0256 (2)0.71693 (19)0.42162 (12)0.0401 (4)
H14A0.02400.77100.37470.048*
H14B−0.12270.76160.44240.048*
C15−0.0681 (2)0.55669 (19)0.37564 (12)0.0434 (4)
H15A−0.15870.54900.32800.052*
H15B−0.10290.50190.42600.052*
C160.1146 (2)0.56287 (17)0.21572 (11)0.0385 (4)
N1−0.1521 (3)1.0257 (2)−0.26936 (13)0.0688 (5)
N2−0.5676 (2)0.9136 (3)−0.12990 (15)0.0767 (6)
O10.56498 (15)0.67023 (14)0.43571 (9)0.0494 (3)
O20.39558 (16)0.85988 (14)0.60659 (10)0.0540 (3)
O30.08385 (15)0.72386 (12)0.50341 (8)0.0419 (3)
S10.02900 (5)0.82515 (5)−0.08826 (3)0.04072 (12)
S2−0.27073 (5)0.74152 (6)0.00882 (3)0.04764 (13)
S30.23772 (5)0.67410 (5)0.06743 (3)0.04530 (12)
S4−0.06611 (5)0.59369 (5)0.15614 (3)0.04415 (12)
S50.44704 (6)0.56746 (5)0.21477 (4)0.05140 (14)
S60.09787 (6)0.47074 (5)0.31522 (3)0.04736 (13)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0563 (10)0.0477 (9)0.0365 (8)0.0147 (8)0.0069 (7)0.0124 (7)
C20.0451 (8)0.0380 (8)0.0278 (7)0.0106 (7)0.0008 (6)0.0076 (6)
C30.0410 (8)0.0444 (8)0.0301 (7)0.0123 (7)−0.0020 (6)0.0100 (6)
C40.0463 (10)0.0674 (11)0.0386 (9)0.0175 (9)0.0003 (7)0.0160 (8)
C50.0369 (8)0.0431 (8)0.0279 (7)0.0110 (7)0.0006 (6)0.0083 (6)
C60.0407 (8)0.0448 (8)0.0274 (7)0.0113 (7)−0.0024 (6)0.0064 (6)
C70.0447 (9)0.0432 (8)0.0333 (8)0.0142 (7)−0.0099 (7)0.0031 (6)
C80.0429 (9)0.0542 (10)0.0452 (9)0.0016 (8)−0.0058 (7)0.0167 (8)
C90.0398 (8)0.0426 (9)0.0456 (9)0.0028 (7)−0.0038 (7)0.0097 (7)
C100.0551 (11)0.0863 (15)0.0479 (11)0.0191 (11)−0.0054 (9)0.0160 (10)
C110.0723 (14)0.0645 (12)0.0598 (12)0.0214 (11)0.0145 (10)0.0259 (10)
C120.0559 (11)0.0452 (9)0.0458 (10)0.0001 (8)0.0052 (8)−0.0024 (8)
C130.0561 (11)0.0388 (9)0.0544 (10)0.0115 (8)0.0050 (8)0.0037 (8)
C140.0381 (8)0.0480 (9)0.0399 (8)0.0100 (7)0.0039 (6)0.0202 (7)
C150.0413 (8)0.0516 (9)0.0391 (8)−0.0083 (7)−0.0085 (7)0.0230 (7)
C160.0477 (9)0.0382 (8)0.0299 (7)0.0131 (7)−0.0096 (7)0.0048 (6)
N10.0948 (14)0.0705 (11)0.0523 (10)0.0233 (10)0.0155 (9)0.0307 (9)
N20.0525 (10)0.1179 (17)0.0673 (12)0.0318 (11)−0.0040 (9)0.0268 (11)
O10.0477 (7)0.0621 (8)0.0408 (6)0.0152 (6)−0.0050 (5)0.0127 (6)
O20.0509 (7)0.0463 (7)0.0644 (8)0.0010 (6)0.0077 (6)0.0103 (6)
O30.0508 (7)0.0355 (6)0.0399 (6)0.0046 (5)−0.0055 (5)0.0104 (5)
S10.0380 (2)0.0521 (2)0.0354 (2)0.01113 (18)0.00434 (16)0.01327 (17)
S20.0403 (2)0.0657 (3)0.0470 (2)0.0160 (2)0.00757 (18)0.0305 (2)
S30.0407 (2)0.0629 (3)0.0344 (2)0.0145 (2)−0.00208 (16)0.01077 (19)
S40.0418 (2)0.0618 (3)0.0331 (2)0.01220 (19)−0.00430 (16)0.01804 (18)
S50.0472 (3)0.0551 (3)0.0507 (3)0.0212 (2)−0.0144 (2)0.0019 (2)
S60.0675 (3)0.0392 (2)0.0371 (2)0.0133 (2)−0.0134 (2)0.01131 (17)

Geometric parameters (Å, °)

C1—N11.135 (2)C10—C111.480 (3)
C1—C21.430 (2)C10—H10A0.9700
C2—C31.343 (2)C10—H10B0.9700
C2—S11.7352 (18)C11—O21.420 (3)
C3—C41.430 (2)C11—H11A0.9700
C3—S21.7318 (18)C11—H11B0.9700
C4—N21.133 (3)C12—O21.411 (2)
C5—C61.348 (2)C12—C131.497 (3)
C5—S11.7615 (18)C12—H12A0.9700
C5—S21.7625 (19)C12—H12B0.9700
C6—S31.7476 (19)C13—O31.420 (2)
C6—S41.7490 (19)C13—H13A0.9700
C7—C161.340 (3)C13—H13B0.9700
C7—S51.7479 (19)C14—O31.414 (2)
C7—S31.764 (2)C14—C151.496 (2)
C8—C91.505 (3)C14—H14A0.9700
C8—S51.823 (2)C14—H14B0.9700
C8—H8A0.9700C15—S61.814 (2)
C8—H8B0.9700C15—H15A0.9700
C9—O11.421 (2)C15—H15B0.9700
C9—H9A0.9700C16—S61.7499 (19)
C9—H9B0.9700C16—S41.7555 (18)
C10—O11.419 (2)
N1—C1—C2179.5 (2)C10—C11—H11B109.7
C3—C2—C1123.03 (15)H11A—C11—H11B108.2
C3—C2—S1118.17 (13)O2—C12—C13111.50 (16)
C1—C2—S1118.78 (13)O2—C12—H12A109.3
C2—C3—C4123.67 (16)C13—C12—H12A109.3
C2—C3—S2118.12 (12)O2—C12—H12B109.3
C4—C3—S2118.19 (14)C13—C12—H12B109.3
N2—C4—C3179.9 (3)H12A—C12—H12B108.0
C6—C5—S1123.07 (13)O3—C13—C12109.47 (15)
C6—C5—S2121.53 (13)O3—C13—H13A109.8
S1—C5—S2115.39 (9)C12—C13—H13A109.8
C5—C6—S3124.32 (14)O3—C13—H13B109.8
C5—C6—S4121.23 (14)C12—C13—H13B109.8
S3—C6—S4114.42 (9)H13A—C13—H13B108.2
C16—C7—S5125.91 (13)O3—C14—C15108.09 (13)
C16—C7—S3117.11 (12)O3—C14—H14A110.1
S5—C7—S3116.72 (11)C15—C14—H14A110.1
C9—C8—S5114.18 (13)O3—C14—H14B110.1
C9—C8—H8A108.7C15—C14—H14B110.1
S5—C8—H8A108.7H14A—C14—H14B108.4
C9—C8—H8B108.7C14—C15—S6113.74 (12)
S5—C8—H8B108.7C14—C15—H15A108.8
H8A—C8—H8B107.6S6—C15—H15A108.8
O1—C9—C8107.67 (14)C14—C15—H15B108.8
O1—C9—H9A110.2S6—C15—H15B108.8
C8—C9—H9A110.2H15A—C15—H15B107.7
O1—C9—H9B110.2C7—C16—S6125.35 (13)
C8—C9—H9B110.2C7—C16—S4116.95 (13)
H9A—C9—H9B108.5S6—C16—S4117.42 (11)
O1—C10—C11116.36 (18)C10—O1—C9116.55 (15)
O1—C10—H10A108.2C12—O2—C11113.79 (15)
C11—C10—H10A108.2C14—O3—C13112.15 (13)
O1—C10—H10B108.2C2—S1—C594.00 (8)
C11—C10—H10B108.2C3—S2—C594.10 (8)
H10A—C10—H10B107.4C6—S3—C795.23 (8)
O2—C11—C10109.80 (18)C6—S4—C1695.58 (9)
O2—C11—H11A109.7C7—S5—C8101.42 (9)
C10—C11—H11A109.7C16—S6—C15100.76 (8)
O2—C11—H11B109.7

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C13—H13A···N1i0.972.653.534 (3)152
C14—H14A···N1ii0.972.743.691 (3)168
C14—H14B···O1iii0.972.643.401 (3)136
C15—H15A···O1iii0.972.993.402 (3)107
C9—H9A···O2iv0.972.573.406 (3)144
C15—H15B···O3v0.972.473.317 (2)146

Symmetry codes: (i) x, y, z+1; (ii) −x, −y+2, −z; (iii) x−1, y, z; (iv) −x+1, −y+2, −z+1; (v) −x, −y+1, −z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NG2773).

References

  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hou, R., Li, B., Yin, B. & Wu, L. (2009). Acta Cryst. E65, o1057. [PMC free article] [PubMed]
  • Moore, A. J., Goldenberg, L. M., Bryce, M. R. & Petty, M. (2000). J. Org. Chem.65, 8269–8276. [PubMed]
  • Otsubo, T. & Ogura, F. (1985). Bull. Chem. Soc. Jpn, 58, 1343–1344.
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Yin, B. Z., Wang, C. L., Chen, T. & Cong, Z. Q. (2006). Chin. Chem. Reagent, 28, 132–134.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography