PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1496–o1497.
Published online 2010 May 29. doi:  10.1107/S1600536810019677
PMCID: PMC2979552

2-Amino-5-chloro­pyridinium 2-carb­oxy­acetate

Abstract

The title salt, C5H6ClN2 +·C3H3O4 , contains two cations and two anions in the asymmetric unit. Both 2-amino-5-chloro­pyridinium ions are protonated at their pyridine N atoms and both hydrogen malonate ions feature an intra­molecular O—H(...)O hydrogen bond, which generates an S(6) ring motif and results in a folded conformation. In the crystal structure, the cations and anions are linked via N—H(...)O, O—H(...)O and C—H(...)O hydrogen bonds, forming chains propagating in [010], which are cross-linked by further C—H(...)O inter­actions.

Related literature

For background to the chemistry of substituted pyridines, see: Amr et al. (2006 [triangle]); Bart et al. (2001 [triangle]); Shinkai et al. (2000 [triangle]); Klimesôva et al. (1999 [triangle]). For related structures, see: Pourayoubi et al. (2007 [triangle]); Janczak & Perpétuo (2009 [triangle]); Akriche & Rzaigui (2005 [triangle]). For details of hydrogen bonding, see: Jeffrey & Saenger (1991 [triangle]); Jeffrey (1997 [triangle]); Scheiner (1997 [triangle]). For hydrogen-bond motifs, see: Bernstein et al. (1995 [triangle]). For bond-length data, see: Allen et al. (1987 [triangle]). For the stability of the temperature controller used in the data collection, see: Cosier & Glazer (1986 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1496-scheme1.jpg

Experimental

Crystal data

  • C5H6ClN2 +·C3H3O4
  • M r = 232.62
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1496-efi1.jpg
  • a = 15.6971 (19) Å
  • b = 16.866 (2) Å
  • c = 7.4662 (10) Å
  • β = 94.518 (3)°
  • V = 1970.5 (4) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.38 mm−1
  • T = 100 K
  • 0.22 × 0.14 × 0.07 mm

Data collection

  • Bruker APEXII DUO CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2009 [triangle]) T min = 0.921, T max = 0.973
  • 22474 measured reflections
  • 5811 independent reflections
  • 4314 reflections with I > 2σ(I)
  • R int = 0.050

Refinement

  • R[F 2 > 2σ(F 2)] = 0.040
  • wR(F 2) = 0.097
  • S = 1.01
  • 5811 reflections
  • 343 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.29 e Å−3

Data collection: APEX2 (Bruker, 2009 [triangle]); cell refinement: SAINT (Bruker, 2009 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810019677/hb5466sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810019677/hb5466Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

MH and HKF thank the Malaysian Government and Universiti Sains Malaysia for the Research University Golden Goose grant No. 1001/PFIZIK/811012. MH also thanks Universiti Sains Malaysia for a post-doctoral research fellowship.

supplementary crystallographic information

Comment

Pyridine and its derivatives continue to attract great interest due to the wide variety of interesting biological activities observed for these compounds, such as anticancer, analgesic, antimicrobial, and antidepressant activities (Amr et al., 2006; Bart et al., 2001; Shinkai et al., 2000; Klimesôva et al., 1999). They are often involved in hydrogen-bond interactions (Jeffrey & Saenger, 1991; Jeffrey, 1997; Scheiner, 1997). The crystal structures of 2-amino-5-chloropyridine (Pourayoubi et al., 2007), 2-amino-5-chloropyridinium trichloroacetate (Janczak & Perpétuo, 2009) and bis(2-amino-5-chloropyridinium)dihydrogendi phosphate (Akriche & Rzaigui, 2005) have been reported. Since our aim is to study some interesting hydrogen-bonding interactions, the crystal structure of the title salt, (I), is presented here.

The asymmetric unit of the title salt consists of two crystallographically independent 2-amino-5-chloropyridinium cations and two hydrogen malonate anions, with atom labelling suffixes of A & B (Fig. 1). Each 2-amino-5-chloropyridinium cation is planar, with a maximum deviation of 0.002 (1) Å for C5A atom (molecule A) and 0.009 (1) Å for atom N1B (molecule B). In the cations, protonation at atoms N1A and N1B lead to slight increases in the C1A—N1A—C5A [123.22 (13)°] and C1B—N1B—C5B [122.97 (14)°] angles compared to those observed in an unprotonated structure (Pourayoubi et al., 2007). The bond lengths (Allen et al., 1987) and angles are normal.

In the crystal structure, (Fig. 2), the ionic units are linked by N1A—H1NA···O1A; N2A—H2NA···O2A; N2A—H3NA···O3B; N1B—H1NB···O1B; N2B—H2NB···O2B; N2B—H3NB···O3A; C1A—H1A···O3B; C1B—H1B···O3A; C4A—H4A···O4B and C4B—H4B···O4A (Table 1) hydrogen bonds, forming one-dimensional chains along the b-axis. Furthermore, these chains are inter-connected by intermolecular C7A—H7AB···O1B and C7B—H7BB···O4A hydrogen bonds. There are intramolecular O4A—H1OA···O2A and O4B—H1OB···O2B hydrogen bonds in the hydrogen malonate anions, which generate S(6) (Bernstein et al., 1995) ring motifs, resulting in folded conformation.

Experimental

A hot methanol solution (20 ml) of 2-amino-5-chloropyridine (64 mg, Aldrich) and malonic acid acid (52 mg, Merck) were mixed and warmed over a heating magnetic stirrer hotplate for a few minutes. The resulting solution was allowed to cool slowly at room temperature and colourless needles of (I) appeared after a few days.

Refinement

All the H atoms were located from the difference Fourier maps and allowed to refine freely [N–H = 0.87 (2)–0.95 (2) Å, O–H = 0.93 (3)–0.94 (3) Å and C–H = 0.90 (2)–0.97 (2) Å].

Figures

Fig. 1.
The asymmetric unit of (I). Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
The crystal packing of (I), showing the hydrogen-bonded (dashed lines) network.

Crystal data

C5H6ClN2+·C3H3O4F(000) = 960
Mr = 232.62Dx = 1.568 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3966 reflections
a = 15.6971 (19) Åθ = 2.6–29.5°
b = 16.866 (2) ŵ = 0.38 mm1
c = 7.4662 (10) ÅT = 100 K
β = 94.518 (3)°Needle, colourless
V = 1970.5 (4) Å30.22 × 0.14 × 0.07 mm
Z = 8

Data collection

Bruker APEXII DUO CCD diffractometer5811 independent reflections
Radiation source: fine-focus sealed tube4314 reflections with I > 2σ(I)
graphiteRint = 0.050
[var phi] and ω scansθmax = 30.1°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009)h = −22→22
Tmin = 0.921, Tmax = 0.973k = −23→23
22474 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.097H atoms treated by a mixture of independent and constrained refinement
S = 1.01w = 1/[σ2(Fo2) + (0.0434P)2 + 0.3626P] where P = (Fo2 + 2Fc2)/3
5811 reflections(Δ/σ)max = 0.001
343 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.29 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.
Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl1A1.10339 (2)0.51132 (2)0.62925 (6)0.02059 (10)
N1A0.96753 (8)0.70248 (8)0.71311 (18)0.0154 (3)
N2A0.98853 (9)0.83754 (8)0.6948 (2)0.0201 (3)
C1A0.99204 (10)0.62574 (9)0.7005 (2)0.0158 (3)
C2A1.07092 (10)0.60860 (9)0.6478 (2)0.0161 (3)
C3A1.12584 (10)0.67048 (10)0.6084 (2)0.0185 (3)
C4A1.10044 (10)0.74747 (9)0.6221 (2)0.0183 (3)
C5A1.01808 (10)0.76410 (9)0.6772 (2)0.0153 (3)
O1A0.80991 (7)0.72010 (7)0.78892 (17)0.0217 (3)
O2A0.82767 (7)0.84610 (6)0.87375 (16)0.0188 (2)
O3A0.59603 (7)0.85002 (7)1.08754 (16)0.0210 (3)
O4A0.71363 (7)0.91411 (7)1.02782 (17)0.0202 (2)
C6A0.78450 (10)0.78253 (9)0.8570 (2)0.0152 (3)
C7A0.69498 (10)0.78000 (9)0.9200 (2)0.0150 (3)
C8A0.66443 (10)0.85090 (9)1.0200 (2)0.0156 (3)
Cl1B0.63656 (3)0.19876 (2)0.73072 (6)0.02333 (10)
N1B0.49352 (8)0.38598 (8)0.80976 (18)0.0157 (3)
N2B0.50075 (9)0.51989 (8)0.7476 (2)0.0208 (3)
C1B0.52319 (10)0.31042 (9)0.8071 (2)0.0164 (3)
C2B0.59873 (10)0.29500 (10)0.7381 (2)0.0175 (3)
C3B0.64554 (10)0.35768 (10)0.6699 (2)0.0200 (3)
C4B0.61446 (10)0.43307 (10)0.6713 (2)0.0192 (3)
C5B0.53518 (10)0.44787 (9)0.7429 (2)0.0162 (3)
O1B0.34096 (7)0.39509 (6)0.92022 (17)0.0215 (3)
O2B0.33226 (7)0.52644 (6)0.89745 (17)0.0209 (3)
O3B0.10788 (7)0.53283 (7)1.13690 (18)0.0270 (3)
O4B0.21003 (7)0.59797 (7)1.01198 (17)0.0213 (3)
C6B0.30412 (10)0.45958 (9)0.9424 (2)0.0157 (3)
C7B0.22061 (10)0.45532 (9)1.0316 (2)0.0163 (3)
C8B0.17473 (10)0.53207 (9)1.0644 (2)0.0172 (3)
H1A0.9511 (11)0.5865 (11)0.730 (2)0.016 (4)*
H1B0.4871 (12)0.2697 (12)0.856 (3)0.026 (5)*
H3A1.1788 (13)0.6612 (11)0.572 (3)0.025 (5)*
H3B0.7003 (13)0.3485 (11)0.623 (3)0.026 (5)*
H4A1.1372 (13)0.7899 (12)0.597 (3)0.028 (5)*
H4B0.6435 (13)0.4767 (12)0.626 (3)0.026 (5)*
H7AA0.6570 (12)0.7744 (11)0.815 (3)0.023 (5)*
H7AB0.6906 (13)0.7322 (12)0.991 (3)0.029 (5)*
H7BA0.1847 (14)0.4223 (13)0.967 (3)0.035 (6)*
H7BB0.2294 (13)0.4291 (12)1.145 (3)0.031 (6)*
H1NA0.9120 (14)0.7144 (13)0.738 (3)0.035 (6)*
H2NA0.9348 (14)0.8461 (12)0.743 (3)0.033 (6)*
H3NA1.0235 (14)0.8762 (14)0.680 (3)0.041 (6)*
H1NB0.4410 (14)0.3956 (12)0.851 (3)0.034 (6)*
H2NB0.4509 (13)0.5249 (12)0.793 (3)0.028 (5)*
H3NB0.5290 (14)0.5628 (14)0.702 (3)0.038 (6)*
H1OA0.7643 (16)0.8995 (15)0.976 (3)0.051 (7)*
H1OB0.2602 (17)0.5811 (16)0.965 (4)0.058 (8)*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl1A0.02137 (19)0.01383 (18)0.0268 (2)0.00466 (14)0.00314 (16)−0.00142 (16)
N1A0.0130 (6)0.0137 (6)0.0202 (7)−0.0002 (5)0.0045 (5)−0.0004 (5)
N2A0.0188 (7)0.0131 (7)0.0292 (8)−0.0008 (5)0.0074 (6)0.0005 (6)
C1A0.0172 (7)0.0120 (7)0.0182 (7)−0.0011 (6)0.0025 (6)−0.0002 (6)
C2A0.0172 (7)0.0128 (7)0.0182 (7)0.0019 (5)0.0016 (6)−0.0007 (6)
C3A0.0134 (7)0.0198 (8)0.0228 (8)0.0008 (6)0.0054 (6)−0.0010 (7)
C4A0.0161 (7)0.0156 (7)0.0238 (8)−0.0030 (6)0.0054 (6)0.0015 (6)
C5A0.0165 (7)0.0147 (7)0.0149 (7)−0.0015 (5)0.0018 (6)0.0004 (6)
O1A0.0173 (5)0.0146 (5)0.0346 (7)−0.0007 (4)0.0101 (5)−0.0051 (5)
O2A0.0185 (5)0.0132 (5)0.0255 (6)−0.0037 (4)0.0074 (5)−0.0022 (5)
O3A0.0193 (5)0.0195 (6)0.0250 (6)0.0019 (4)0.0080 (5)−0.0011 (5)
O4A0.0225 (6)0.0123 (5)0.0272 (6)−0.0009 (4)0.0096 (5)−0.0026 (5)
C6A0.0155 (7)0.0137 (7)0.0165 (7)0.0004 (5)0.0023 (6)0.0013 (6)
C7A0.0150 (7)0.0122 (7)0.0178 (7)−0.0013 (5)0.0023 (6)−0.0001 (6)
C8A0.0187 (7)0.0128 (7)0.0154 (7)0.0016 (5)0.0026 (6)0.0025 (6)
Cl1B0.0262 (2)0.0190 (2)0.0250 (2)0.00833 (15)0.00331 (16)0.00035 (17)
N1B0.0148 (6)0.0144 (6)0.0184 (6)−0.0006 (5)0.0038 (5)0.0001 (5)
N2B0.0198 (7)0.0146 (7)0.0288 (8)−0.0001 (5)0.0081 (6)0.0015 (6)
C1B0.0177 (7)0.0140 (7)0.0174 (7)−0.0003 (6)0.0011 (6)0.0013 (6)
C2B0.0191 (7)0.0166 (7)0.0164 (7)0.0037 (6)−0.0006 (6)−0.0007 (6)
C3B0.0161 (7)0.0249 (8)0.0195 (8)0.0010 (6)0.0053 (6)−0.0024 (7)
C4B0.0176 (7)0.0194 (8)0.0212 (8)−0.0032 (6)0.0061 (6)−0.0009 (7)
C5B0.0176 (7)0.0148 (7)0.0162 (7)−0.0025 (6)0.0015 (6)−0.0010 (6)
O1B0.0192 (5)0.0124 (5)0.0342 (7)0.0012 (4)0.0110 (5)0.0018 (5)
O2B0.0208 (6)0.0119 (5)0.0312 (7)−0.0005 (4)0.0094 (5)0.0013 (5)
O3B0.0246 (6)0.0194 (6)0.0392 (8)0.0045 (5)0.0157 (6)0.0017 (6)
O4B0.0199 (6)0.0128 (5)0.0321 (7)0.0012 (4)0.0082 (5)−0.0002 (5)
C6B0.0162 (7)0.0137 (7)0.0175 (7)0.0013 (5)0.0024 (6)−0.0002 (6)
C7B0.0170 (7)0.0113 (7)0.0212 (8)0.0015 (5)0.0054 (6)0.0016 (6)
C8B0.0178 (7)0.0147 (7)0.0193 (8)0.0020 (6)0.0016 (6)0.0005 (6)

Geometric parameters (Å, °)

Cl1A—C2A1.7268 (16)Cl1B—C2B1.7308 (16)
N1A—C5A1.3472 (19)N1B—C5B1.3484 (19)
N1A—C1A1.3557 (19)N1B—C1B1.358 (2)
N1A—H1NA0.93 (2)N1B—H1NB0.92 (2)
N2A—C5A1.333 (2)N2B—C5B1.331 (2)
N2A—H2NA0.95 (2)N2B—H2NB0.88 (2)
N2A—H3NA0.87 (2)N2B—H3NB0.93 (2)
C1A—C2A1.360 (2)C1B—C2B1.355 (2)
C1A—H1A0.959 (18)C1B—H1B0.98 (2)
C2A—C3A1.400 (2)C2B—C3B1.406 (2)
C3A—C4A1.365 (2)C3B—C4B1.362 (2)
C3A—H3A0.91 (2)C3B—H3B0.96 (2)
C4A—C5A1.415 (2)C4B—C5B1.415 (2)
C4A—H4A0.95 (2)C4B—H4B0.94 (2)
O1A—C6A1.2481 (18)O1B—C6B1.2491 (18)
O2A—C6A1.2692 (18)O2B—C6B1.2660 (19)
O3A—C8A1.2217 (19)O3B—C8B1.2181 (19)
O4A—C8A1.3150 (18)O4B—C8B1.3153 (19)
O4A—H1OA0.94 (3)O4B—H1OB0.93 (3)
C6A—C7A1.517 (2)C6B—C7B1.518 (2)
C7A—C8A1.508 (2)C7B—C8B1.511 (2)
C7A—H7AA0.95 (2)C7B—H7BA0.90 (2)
C7A—H7AB0.97 (2)C7B—H7BB0.95 (2)
C5A—N1A—C1A123.22 (13)C5B—N1B—C1B122.97 (14)
C5A—N1A—H1NA116.7 (13)C5B—N1B—H1NB117.6 (13)
C1A—N1A—H1NA119.8 (13)C1B—N1B—H1NB119.3 (13)
C5A—N2A—H2NA120.2 (13)C5B—N2B—H2NB118.2 (13)
C5A—N2A—H3NA117.3 (15)C5B—N2B—H3NB119.7 (14)
H2NA—N2A—H3NA121.5 (19)H2NB—N2B—H3NB122.1 (19)
N1A—C1A—C2A119.54 (14)C2B—C1B—N1B119.84 (15)
N1A—C1A—H1A116.4 (11)C2B—C1B—H1B123.8 (12)
C2A—C1A—H1A124.1 (11)N1B—C1B—H1B116.4 (12)
C1A—C2A—C3A119.49 (14)C1B—C2B—C3B119.44 (15)
C1A—C2A—Cl1A120.43 (12)C1B—C2B—Cl1B120.34 (13)
C3A—C2A—Cl1A120.07 (12)C3B—C2B—Cl1B120.22 (12)
C4A—C3A—C2A120.35 (14)C4B—C3B—C2B120.10 (15)
C4A—C3A—H3A117.8 (12)C4B—C3B—H3B118.8 (12)
C2A—C3A—H3A121.9 (12)C2B—C3B—H3B121.1 (12)
C3A—C4A—C5A119.31 (14)C3B—C4B—C5B119.59 (15)
C3A—C4A—H4A121.2 (12)C3B—C4B—H4B122.9 (12)
C5A—C4A—H4A119.5 (12)C5B—C4B—H4B117.5 (12)
N2A—C5A—N1A118.84 (14)N2B—C5B—N1B119.12 (14)
N2A—C5A—C4A123.08 (14)N2B—C5B—C4B122.84 (15)
N1A—C5A—C4A118.08 (14)N1B—C5B—C4B118.04 (14)
C8A—O4A—H1OA106.3 (15)C8B—O4B—H1OB104.0 (16)
O1A—C6A—O2A124.57 (14)O1B—C6B—O2B124.45 (14)
O1A—C6A—C7A115.85 (13)O1B—C6B—C7B116.22 (13)
O2A—C6A—C7A119.57 (13)O2B—C6B—C7B119.33 (13)
C8A—C7A—C6A118.02 (13)C8B—C7B—C6B118.02 (13)
C8A—C7A—H7AA106.5 (12)C8B—C7B—H7BA109.3 (13)
C6A—C7A—H7AA106.5 (12)C6B—C7B—H7BA108.6 (13)
C8A—C7A—H7AB110.6 (12)C8B—C7B—H7BB106.9 (12)
C6A—C7A—H7AB107.4 (12)C6B—C7B—H7BB109.9 (12)
H7AA—C7A—H7AB107.4 (16)H7BA—C7B—H7BB103.1 (18)
O3A—C8A—O4A121.58 (14)O3B—C8B—O4B121.41 (14)
O3A—C8A—C7A121.26 (14)O3B—C8B—C7B121.29 (14)
O4A—C8A—C7A117.15 (13)O4B—C8B—C7B117.29 (13)
C5A—N1A—C1A—C2A−0.6 (2)C5B—N1B—C1B—C2B1.4 (2)
N1A—C1A—C2A—C3A0.4 (2)N1B—C1B—C2B—C3B0.0 (2)
N1A—C1A—C2A—Cl1A−179.58 (12)N1B—C1B—C2B—Cl1B−179.02 (12)
C1A—C2A—C3A—C4A−0.2 (3)C1B—C2B—C3B—C4B−0.8 (3)
Cl1A—C2A—C3A—C4A179.75 (14)Cl1B—C2B—C3B—C4B178.16 (13)
C2A—C3A—C4A—C5A0.2 (3)C2B—C3B—C4B—C5B0.4 (3)
C1A—N1A—C5A—N2A−179.49 (15)C1B—N1B—C5B—N2B178.66 (15)
C1A—N1A—C5A—C4A0.6 (2)C1B—N1B—C5B—C4B−1.7 (2)
C3A—C4A—C5A—N2A179.68 (17)C3B—C4B—C5B—N2B−179.60 (16)
C3A—C4A—C5A—N1A−0.4 (2)C3B—C4B—C5B—N1B0.8 (2)
O1A—C6A—C7A—C8A173.93 (14)O1B—C6B—C7B—C8B178.82 (15)
O2A—C6A—C7A—C8A−6.9 (2)O2B—C6B—C7B—C8B−0.5 (2)
C6A—C7A—C8A—O3A−173.71 (15)C6B—C7B—C8B—O3B−179.34 (16)
C6A—C7A—C8A—O4A7.8 (2)C6B—C7B—C8B—O4B0.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1A—H1NA···O1A0.93 (2)1.68 (2)2.5982 (17)171 (2)
N2A—H2NA···O2A0.95 (2)2.01 (2)2.9518 (19)169.1 (18)
N2A—H3NA···O3Bi0.87 (2)2.07 (2)2.9333 (18)178 (2)
N1B—H1NB···O1B0.92 (2)1.69 (2)2.5980 (17)169 (2)
N2B—H2NB···O2B0.88 (2)2.08 (2)2.9538 (19)175 (2)
N2B—H3NB···O3Aii0.93 (2)2.04 (2)2.9598 (19)175 (2)
O4A—H1OA···O2A0.94 (2)1.58 (2)2.4835 (16)158 (2)
O4B—H1OB···O2B0.93 (3)1.57 (3)2.4752 (16)162 (3)
C1A—H1A···O3Biii0.960 (18)2.458 (18)3.374 (2)159.6 (14)
C1B—H1B···O3Aiii0.98 (2)2.46 (2)3.417 (2)166.1 (18)
C7A—H7AB···O1Biii0.97 (2)2.31 (2)3.2509 (19)162.6 (18)
C7B—H7BB···O4Aiv0.96 (2)2.55 (2)3.440 (2)155.7 (16)
C4A—H4A···O4Bi0.95 (2)2.32 (2)3.264 (2)171.6 (18)
C4B—H4B···O4Aii0.94 (2)2.30 (2)3.237 (2)177.4 (17)

Symmetry codes: (i) x+1, −y+3/2, z−1/2; (ii) x, −y+3/2, z−1/2; (iii) −x+1, −y+1, −z+2; (iv) −x+1, y−1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5466).

References

  • Akriche, S. & Rzaigui, M. (2005). Acta Cryst. E61, o2607–o2609.
  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Amr, A. G., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A. & Hammam, A. G. (2006). Bioorg. Med. Chem.14, 5481–5488. [PubMed]
  • Bart, A., Jansen, J., Zwan, J. V., Dulk, H., Brouwer, J. & Reedijk, J. (2001). J. Med. Chem.44, 245–249. [PubMed]
  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2009). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst.19, 105–107.
  • Janczak, J. & Perpétuo, G. J. (2009). Acta Cryst. C65, o339–o341. [PubMed]
  • Jeffrey, G. A. (1997). An Introduction to Hydrogen Bonding. Oxford University Press.
  • Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer.
  • Klimesôva, V., Svoboda, M., Waisser, K., Pour, M. & Kaustova, J. (1999). Il Farmaco, 54, 666–672. [PubMed]
  • Pourayoubi, M., Ghadimi, S. & Ebrahimi Valmoozi, A. A. (2007). Acta Cryst. E63, o4631.
  • Scheiner, S. (1997). Hydrogen Bonding. A Theoretical Perspective. Oxford University Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shinkai, H., Ito, T., Iida, T., Kitao, Y., Yamada, H. & Uchida, I. (2000). J. Med. Chem.43, 4667–4677. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography