PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m606.
Published online 2010 May 8. doi:  10.1107/S1600536810015680
PMCID: PMC2979550

Tetra-μ-acetato-κ4 O:O′;κ3 O,O′:O′;κ3 O:O,O′-bis­[(acetato-κ2 O,O′)(1,10-phenanthroline-κ2 N,N′)europium(III)]

Abstract

In the title centrosymmetric dinuclear EuIII complex, [Eu2(CH3COO)6(C12H8N2)2], each EuIII cation is coordinated by seven O atoms from five acetate anions and two N atoms from one phenanthroline ligand in a distorted tricapped trigonal-prismatic geometry. Four acetate anions bridge two EuIII cations to form the dinuclear complex, with an Eu(...)Eu distance of 3.9409 (8) Å. Weak inter­molecular C—H(...)O hydrogen bonding is present in the crystal structure.

Related literature

For related lanthanide complexes with 1,10-phenanthroline and acetate ligands, see: Hu et al. (2006 [triangle]); Panagiotopoulos et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m606-scheme1.jpg

Experimental

Crystal data

  • [Eu2(C2H3O2)6(C12H8N2)2]
  • M r = 1018.61
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m606-efi1.jpg
  • a = 8.7671 (19) Å
  • b = 8.9265 (19) Å
  • c = 12.992 (3) Å
  • α = 103.631 (2)°
  • β = 109.254 (2)°
  • γ = 98.300 (3)°
  • V = 905.1 (3) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 3.50 mm−1
  • T = 298 K
  • 0.20 × 0.19 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2001 [triangle]) T min = 0.541, T max = 0.571
  • 5010 measured reflections
  • 3474 independent reflections
  • 3062 reflections with I > 2σ(I)
  • R int = 0.021

Refinement

  • R[F 2 > 2σ(F 2)] = 0.030
  • wR(F 2) = 0.062
  • S = 1.05
  • 3474 reflections
  • 247 parameters
  • H-atom parameters constrained
  • Δρmax = 0.80 e Å−3
  • Δρmin = −0.64 e Å−3

Data collection: SMART (Bruker, 2001 [triangle]); cell refinement: SAINT (Bruker, 2001 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015680/xu2753sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015680/xu2753Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported financially by Guangdong Provincial Science and Technology Bureau (grant No. 2008B010600009) and the NSFC (grant Nos. 20971047 and U0734005).

supplementary crystallographic information

Comment

Dinuclear lanthanide complexes with 1,10-phenanthroline and acetate ligands had previously been reported (Panagiotopoulos et al., 1995; Hu et al., 2006). In this title complex, each Eu atom is coordinated by two N atoms from one chelating phenanthroline ligand and seven oxygen atoms from acetate ions, to form a distorted tricapped trigonal prism, giving a dimeric structure with an inversion center (Fig.1). The result of the dinuclear centrosymmetric molecule with the Eu···Eu distance of 3.9409 (8) Å was that acetate ions exhibit three different coordination modes: common bidentate chelating mode, bidentate bridging mode and tridentate bridging mode. The Eu1—O bond distances vary from 2.359 (3) Å to 2.586 (3) Å and the Eu1—N bond length are 2.594 (3) Å and 2.649 (4) Å. The C—O distances of CH3COO- are within the range of 1.257 (5)Å to 1.273 (5) Å. This complex exhibits a three-dimensional structure via C—H···O hydrogen-bonds (Table 1).

Experimental

A stoichiometric amount of acetic acid and a quantitative amount of 1,10-phenanthroline (0.5 mmol) were mixed and then dissolved in 95% ethanol solution (20 ml). The pH value of the solution was adjusted to 6.5 by adding 1.0 M NaOH solution, and then added dropwise to the ethanol solution (20 ml) of Eu(NO3)3.6H2O (0.5 mmol). The solution mixture was stirred continuously for 2 h at room temperature and then filtered. Single crystals were obtained by evaporation after one week.

Refinement

H atoms were positioned in calculated positions, with C—H = 0.93 (aromatic) and 0.96 Å (methyl), and refined in riding mode with Uiso(H) = 1.5Ueq(C) for methyl and 1.2Ueq(C) for the others.

Figures

Fig. 1.
Displacement ellipsoid plot (40% probability level) of the title compound [symmetry code: (A) -x+1, -y+2, -z+1].

Crystal data

[Eu2(C2H3O2)6(C12H8N2)2]Z = 1
Mr = 1018.61F(000) = 500
Triclinic, P1Dx = 1.869 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 8.7671 (19) ÅCell parameters from 2079 reflections
b = 8.9265 (19) Åθ = 0.7–25.2°
c = 12.992 (3) ŵ = 3.50 mm1
α = 103.631 (2)°T = 298 K
β = 109.254 (2)°Block, colorless
γ = 98.300 (3)°0.20 × 0.19 × 0.18 mm
V = 905.1 (3) Å3

Data collection

Bruker SMART CCD diffractometer3474 independent reflections
Radiation source: fine-focus sealed tube3062 reflections with I > 2σ(I)
graphiteRint = 0.021
ω scansθmax = 26.0°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Bruker, 2001)h = −10→10
Tmin = 0.541, Tmax = 0.571k = −8→10
5010 measured reflectionsl = −14→15

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.062H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.025P)2] where P = (Fo2 + 2Fc2)/3
3474 reflections(Δ/σ)max < 0.001
247 parametersΔρmax = 0.80 e Å3
0 restraintsΔρmin = −0.64 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Eu10.47430 (3)0.84412 (3)0.356229 (17)0.02341 (8)
O30.5788 (4)1.1409 (4)0.4756 (2)0.0312 (7)
O40.6208 (4)1.0735 (4)0.3157 (2)0.0336 (7)
O20.2565 (4)0.5955 (4)0.2687 (3)0.0419 (8)
O10.5000 (4)0.5829 (4)0.3834 (3)0.0373 (8)
O50.7449 (4)0.8969 (4)0.4988 (2)0.0310 (7)
N10.6375 (4)0.7194 (4)0.2384 (3)0.0277 (8)
C10.7671 (6)0.6658 (5)0.2863 (4)0.0362 (11)
H10.79150.66370.36120.043*
C20.8702 (6)0.6116 (6)0.2307 (4)0.0423 (12)
H20.96090.57530.26780.051*
C30.8341 (6)0.6134 (6)0.1215 (4)0.0450 (13)
H30.90070.57820.08290.054*
C40.6972 (6)0.6680 (6)0.0664 (4)0.0368 (11)
C70.4176 (6)0.7809 (6)−0.0387 (4)0.0421 (13)
C60.4559 (6)0.7750 (5)0.0747 (3)0.0294 (10)
N20.3612 (5)0.8179 (4)0.1353 (3)0.0323 (9)
C120.2280 (6)0.8637 (6)0.0849 (4)0.0437 (13)
H80.16010.88950.12490.052*
C110.1825 (7)0.8757 (7)−0.0271 (4)0.0565 (16)
H70.08830.9110−0.05920.068*
C100.2789 (7)0.8348 (7)−0.0871 (4)0.0524 (15)
H60.25160.8431−0.16070.063*
C50.6006 (6)0.7203 (5)0.1290 (4)0.0299 (10)
C150.6463 (5)1.1743 (5)0.4079 (4)0.0284 (10)
C130.3479 (6)0.5207 (5)0.3230 (4)0.0327 (11)
C80.5223 (7)0.7281 (7)−0.0976 (4)0.0534 (15)
H50.49860.7328−0.17180.064*
O60.7627 (4)1.0478 (4)0.6690 (2)0.0336 (7)
C140.2753 (7)0.3534 (6)0.3168 (5)0.0506 (14)
H9A0.15750.32550.27370.076*
H9B0.29590.34700.39270.076*
H9C0.32640.28140.28000.076*
C160.7559 (6)1.3374 (6)0.4417 (4)0.0422 (12)
H10A0.80971.34120.38860.063*
H10B0.83851.36120.51720.063*
H10C0.68941.41400.44090.063*
C90.6513 (7)0.6730 (7)−0.0494 (4)0.0539 (15)
H40.71360.6367−0.09140.065*
C180.9975 (5)0.9554 (6)0.6560 (4)0.0395 (12)
H11A1.00030.84570.64450.059*
H11B1.04141.01060.73650.059*
H11C1.06361.00250.62060.059*
C170.8220 (5)0.9669 (5)0.6038 (4)0.0277 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Eu10.02392 (12)0.02795 (13)0.02150 (12)0.00926 (9)0.01093 (9)0.00800 (9)
O30.0368 (18)0.0376 (18)0.0297 (16)0.0146 (15)0.0192 (14)0.0159 (15)
O40.0410 (19)0.0386 (19)0.0242 (16)0.0079 (15)0.0181 (14)0.0077 (15)
O20.039 (2)0.038 (2)0.045 (2)0.0085 (16)0.0110 (16)0.0142 (17)
O10.038 (2)0.0360 (19)0.0442 (19)0.0151 (15)0.0170 (16)0.0167 (16)
O50.0288 (17)0.0393 (19)0.0243 (16)0.0108 (14)0.0111 (13)0.0056 (14)
N10.030 (2)0.028 (2)0.0260 (19)0.0091 (16)0.0132 (16)0.0064 (16)
C10.044 (3)0.038 (3)0.032 (3)0.017 (2)0.019 (2)0.011 (2)
C20.034 (3)0.047 (3)0.050 (3)0.018 (2)0.018 (2)0.013 (3)
C30.046 (3)0.047 (3)0.048 (3)0.016 (3)0.031 (3)0.004 (3)
C40.043 (3)0.037 (3)0.032 (3)0.011 (2)0.021 (2)0.003 (2)
C70.050 (3)0.048 (3)0.025 (2)0.007 (3)0.014 (2)0.010 (2)
C60.036 (3)0.027 (2)0.022 (2)0.004 (2)0.011 (2)0.0032 (19)
N20.034 (2)0.035 (2)0.027 (2)0.0104 (18)0.0096 (17)0.0088 (18)
C120.039 (3)0.061 (4)0.031 (3)0.024 (3)0.011 (2)0.012 (3)
C110.064 (4)0.074 (4)0.033 (3)0.033 (3)0.009 (3)0.021 (3)
C100.069 (4)0.060 (4)0.027 (3)0.018 (3)0.013 (3)0.016 (3)
C50.037 (3)0.025 (2)0.028 (2)0.005 (2)0.015 (2)0.005 (2)
C150.027 (2)0.034 (3)0.031 (2)0.012 (2)0.014 (2)0.015 (2)
C130.043 (3)0.033 (3)0.029 (2)0.012 (2)0.024 (2)0.006 (2)
C80.067 (4)0.071 (4)0.029 (3)0.018 (3)0.027 (3)0.015 (3)
O60.0333 (18)0.0416 (19)0.0257 (16)0.0171 (15)0.0109 (14)0.0052 (15)
C140.064 (4)0.033 (3)0.057 (3)0.004 (3)0.027 (3)0.016 (3)
C160.049 (3)0.036 (3)0.046 (3)0.007 (2)0.027 (3)0.009 (2)
C90.063 (4)0.066 (4)0.037 (3)0.017 (3)0.030 (3)0.008 (3)
C180.030 (3)0.044 (3)0.041 (3)0.013 (2)0.009 (2)0.009 (2)
C170.027 (2)0.028 (2)0.034 (3)0.0086 (19)0.014 (2)0.014 (2)

Geometric parameters (Å, °)

Eu1—O3i2.358 (3)C7—C101.384 (7)
Eu1—O6i2.374 (3)C7—C61.415 (6)
Eu1—O52.377 (3)C7—C81.438 (7)
Eu1—O22.453 (3)C6—N21.355 (5)
Eu1—O12.470 (3)C6—C51.448 (6)
Eu1—O42.513 (3)N2—C121.311 (6)
Eu1—O32.586 (3)C12—C111.411 (7)
Eu1—N12.594 (3)C12—H80.9300
Eu1—N22.649 (4)C11—C101.358 (7)
Eu1—C132.815 (5)C11—H70.9300
Eu1—C152.920 (4)C10—H60.9300
Eu1—Eu1i3.9409 (8)C15—C161.500 (6)
O3—C151.276 (5)C13—C141.508 (6)
O3—Eu1i2.358 (3)C8—C91.324 (8)
O4—C151.245 (5)C8—H50.9300
O2—C131.262 (6)O6—C171.273 (5)
O1—C131.262 (5)O6—Eu1i2.374 (3)
O5—C171.256 (5)C14—H9A0.9600
N1—C11.319 (6)C14—H9B0.9600
N1—C51.351 (5)C14—H9C0.9600
C1—C21.402 (6)C16—H10A0.9600
C1—H10.9300C16—H10B0.9600
C2—C31.352 (7)C16—H10C0.9600
C2—H20.9300C9—H40.9300
C3—C41.399 (7)C18—C171.492 (6)
C3—H30.9300C18—H11A0.9600
C4—C51.410 (6)C18—H11B0.9600
C4—C91.437 (7)C18—H11C0.9600
O3i—Eu1—O6i75.03 (10)C5—N1—Eu1120.7 (3)
O3i—Eu1—O576.96 (10)N1—C1—C2123.7 (4)
O6i—Eu1—O5137.07 (10)N1—C1—H1118.2
O3i—Eu1—O286.29 (10)C2—C1—H1118.2
O6i—Eu1—O281.08 (11)C3—C2—C1118.2 (5)
O5—Eu1—O2128.67 (11)C3—C2—H2120.9
O3i—Eu1—O177.36 (10)C1—C2—H2120.9
O6i—Eu1—O1127.36 (11)C2—C3—C4120.5 (4)
O5—Eu1—O175.84 (10)C2—C3—H3119.8
O2—Eu1—O153.10 (11)C4—C3—H3119.8
O3i—Eu1—O4125.07 (10)C3—C4—C5117.4 (4)
O6i—Eu1—O490.28 (11)C3—C4—C9123.4 (5)
O5—Eu1—O479.96 (10)C5—C4—C9119.2 (5)
O2—Eu1—O4144.17 (10)C10—C7—C6117.6 (5)
O1—Eu1—O4141.79 (10)C10—C7—C8123.9 (5)
O3i—Eu1—O374.40 (11)C6—C7—C8118.5 (5)
O6i—Eu1—O372.72 (10)N2—C6—C7122.5 (4)
O5—Eu1—O368.79 (10)N2—C6—C5118.0 (4)
O2—Eu1—O3150.59 (10)C7—C6—C5119.5 (4)
O1—Eu1—O3138.62 (10)C12—N2—C6117.9 (4)
O4—Eu1—O350.80 (9)C12—N2—Eu1122.8 (3)
O3i—Eu1—N1143.33 (11)C6—N2—Eu1118.7 (3)
O6i—Eu1—N1139.90 (10)N2—C12—C11123.2 (5)
O5—Eu1—N177.84 (10)N2—C12—H8118.4
O2—Eu1—N189.07 (11)C11—C12—H8118.4
O1—Eu1—N170.92 (11)C10—C11—C12118.8 (5)
O4—Eu1—N175.40 (10)C10—C11—H7120.6
O3—Eu1—N1119.64 (10)C12—C11—H7120.6
O3i—Eu1—N2149.00 (11)C11—C10—C7120.0 (5)
O6i—Eu1—N277.11 (11)C11—C10—H6120.0
O5—Eu1—N2133.80 (10)C7—C10—H6120.0
O2—Eu1—N276.19 (11)N1—C5—C4122.1 (4)
O1—Eu1—N2110.07 (11)N1—C5—C6118.6 (4)
O4—Eu1—N267.99 (10)C4—C5—C6119.3 (4)
O3—Eu1—N2109.76 (10)O4—C15—O3120.4 (4)
N1—Eu1—N262.79 (11)O4—C15—C16121.0 (4)
O3i—Eu1—C1379.18 (11)O3—C15—C16118.5 (4)
O6i—Eu1—C13103.79 (13)O4—C15—Eu158.8 (2)
O5—Eu1—C13102.11 (13)O3—C15—Eu162.3 (2)
O2—Eu1—C1326.59 (12)C16—C15—Eu1172.3 (3)
O1—Eu1—C1326.61 (12)O2—C13—O1121.4 (4)
O4—Eu1—C13154.90 (11)O2—C13—C14119.9 (4)
O3—Eu1—C13153.35 (11)O1—C13—C14118.8 (5)
N1—Eu1—C1380.57 (12)O2—C13—Eu160.5 (2)
N2—Eu1—C1394.65 (12)O1—C13—Eu161.3 (2)
O3i—Eu1—C1599.99 (11)C14—C13—Eu1173.6 (3)
O6i—Eu1—C1582.87 (11)C9—C8—C7122.1 (5)
O5—Eu1—C1570.72 (11)C9—C8—H5119.0
O2—Eu1—C15160.62 (12)C7—C8—H5119.0
O1—Eu1—C15146.09 (11)C17—O6—Eu1i136.1 (3)
O4—Eu1—C1525.08 (10)C13—C14—H9A109.5
O3—Eu1—C1525.89 (10)C13—C14—H9B109.5
N1—Eu1—C1596.31 (11)H9A—C14—H9B109.5
N2—Eu1—C1589.71 (11)C13—C14—H9C109.5
C13—Eu1—C15172.71 (13)H9A—C14—H9C109.5
O3i—Eu1—Eu1i39.20 (7)H9B—C14—H9C109.5
O6i—Eu1—Eu1i69.54 (7)C15—C16—H10A109.5
O5—Eu1—Eu1i68.14 (7)C15—C16—H10B109.5
O2—Eu1—Eu1i122.20 (8)H10A—C16—H10B109.5
O1—Eu1—Eu1i111.19 (7)C15—C16—H10C109.5
O4—Eu1—Eu1i85.93 (7)H10A—C16—H10C109.5
O3—Eu1—Eu1i35.19 (6)H10B—C16—H10C109.5
N1—Eu1—Eu1i143.56 (8)C8—C9—C4121.4 (5)
N2—Eu1—Eu1i137.30 (8)C8—C9—H4119.3
C13—Eu1—Eu1i118.30 (9)C4—C9—H4119.3
C15—Eu1—Eu1i60.89 (9)C17—C18—H11A109.5
C15—O3—Eu1i160.5 (3)C17—C18—H11B109.5
C15—O3—Eu191.8 (3)H11A—C18—H11B109.5
Eu1i—O3—Eu1105.60 (10)C17—C18—H11C109.5
C15—O4—Eu196.1 (2)H11A—C18—H11C109.5
C13—O2—Eu192.9 (3)H11B—C18—H11C109.5
C13—O1—Eu192.1 (3)O5—C17—O6125.1 (4)
C17—O5—Eu1139.2 (3)O5—C17—C18117.4 (4)
C1—N1—C5118.2 (4)O6—C17—C18117.5 (4)
C1—N1—Eu1120.9 (3)

Symmetry codes: (i) −x+1, −y+2, −z+1.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C2—H2···O2ii0.932.573.287 (6)135
C12—H8···O6i0.932.443.078 (6)126
C16—H10C···O1iii0.962.453.390 (6)165

Symmetry codes: (ii) x+1, y, z; (i) −x+1, −y+2, −z+1; (iii) x, y+1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2753).

References

  • Bruker (2001). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hu, X.-L., Qiu, L., Sun, W.-B. & Chen, Z. (2006). Acta Cryst. E62, m3213–m3214.
  • Panagiotopoulos, A., Zafiropoulos, T. F., Perlepes, S. P., Bakalbassis, E., Masson-Ramade, I., Kahn, O., Terzis, A. & Raptopoulou, C. P. (1995). Inorg. Chem.34, 4918–4923.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography