PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m660.
Published online 2010 May 15. doi:  10.1107/S160053681001682X
PMCID: PMC2979548

Poly[1,4-bis­(ammonio­meth­yl)cyclo­hexane [di-μ-iodido-diiodido­plumbate(II)]]

Abstract

The title compound, {(C8H20N2)[PbI4]}n, is an inorganic–organic hybrid. The structure is composed of alternate layers of two-dimensional corner-sharing PbI6 octa­hedra (An external file that holds a picture, illustration, etc.
Object name is e-66-0m660-efi1.jpg symmetry) and 1,4-bis­(ammonio­meth­yl)cyclo­hexane cations (An external file that holds a picture, illustration, etc.
Object name is e-66-0m660-efi1.jpg symmetry) extending parallel to the bc plane. The cations inter­act with the inorganic layer via N—H(...)I hydrogen bonding in the right-angled halogen sub-type of the terminal halide hydrogen-bonding motif.

Related literature

For other examples of inorganic–organic hybrid structures encorporating cyclic ammonium cations, see: Billing & Lemmerer (2006 [triangle]). For hydrogen-bonding nomenclature for inorganic–organic hybrids, see: Mitzi (1999 [triangle]). For the related chloridoplumbate(II), see: Rayner & Billing (2010a [triangle]) and for the isotypic bromidoplumbate(II), see: Rayner & Billing (2010b [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m660-scheme1.jpg

Experimental

Crystal data

  • (C8H20N2)[PbI4]
  • M r = 859.05
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m660-efi3.jpg
  • a = 12.2793 (17) Å
  • b = 8.7413 (12) Å
  • c = 8.7829 (13) Å
  • β = 95.922 (3)°
  • V = 937.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 15.56 mm−1
  • T = 173 K
  • 0.36 × 0.26 × 0.08 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: integration (XPREP; Bruker, 2005 [triangle]) T min = 0.043, T max = 0.288
  • 5435 measured reflections
  • 2264 independent reflections
  • 2085 reflections with I > 2σ(I)
  • R int = 0.080

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.093
  • S = 1.08
  • 2264 reflections
  • 70 parameters
  • H-atom parameters constrained
  • Δρmax = 1.76 e Å−3
  • Δρmin = −2.79 e Å−3

Data collection: APEX2 (Bruker, 2005 [triangle]); cell refinement: SAINT (Bruker, 2005 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 1999 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Selected bond lengths (Å)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001682X/wm2340sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001682X/wm2340Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The University of the Witwatersrand and the National Research Fund (GUN: 2069064) are acknowledged for the funding and infrastructure required to perform the experiment.

supplementary crystallographic information

Comment

The title structure (Fig. 1) is one of three 2-dimensional hybrid structures that we have synthesized encorporating this diammonium cation. The structures differ in terms of their halogen ligands, which include iodide (presented here), the bromide (Rayner & Billing, 2010b) and chloride (Rayner & Billing, 2010a). The bromide and iodide hybrids are isotypic and crystallize in the monoclinic system with space group P21/c while the chloride hybrid crystallizes in the orthorhombic, Pnma system.

In the structure of the title compound the lead atoms in the PbI6 octahedra occupy inversion centers, giving the octahedra 1 symmetry. The PbI6 octahedra share corners to form layers extending parallel to the bc plane. Octahedra from alternate layers are eclipsed relative to one another (Fig. 2). In all three structures only the trans form of the cation has been observed, giving the cation 1 symmetry (Fig. 3). The ammonium cations interact with the inorganic layer via N—H···X (X = Br, I and Cl) hydrogen bonding in the right-angled halogen subtype of the terminal halide hydrogen bonding motif (Mitzi, 1999). Billing & Lemmerer (2006) reported a series of inorganic-organic hybrids encorpoating cyclic ammonium cations, however no diammonium cations were synthesized.

Experimental

A mixture of 0.050 g (0.11 mmol) PbI2 and 0.017 g (0.17 mmol) 1,4-bis-(aminomethyl)-cyclohexane (mixture of isomers) was dissolved in 5 ml HI at 383 K and slow cooled at a rate of 0.069 K/min to yield yellow, plate-shaped single crystals suitable for X-ray analysis.

Refinement

The H atoms on the diammonium cation were refined using a riding-model, with C—H = 0.99 Å, N—H = 0.91 Å and with Uiso(H)=1.2Ueq(C) or 1.5Ueq(N). The highest residual electron density peak (1.76 e Å-3) was 0.955Å from Pb1.

Figures

Fig. 1.
The extended asymmetric unit of the title compound with atom labels. Displacement ellipsoids were drawn at the 50% probability level. Symmetry codes: (a) -x, -1/2+y, 3/2-z (b) -x, 1-y, 1-z (c) x, 3/2-y, -1/2+z (d) 1-x, 1-y, -z.
Fig. 2.
Packing diagram viewed along the a axis. Hydrogen bonds are drawn as dashed red lines.
Fig. 3.
Packing diagram viewed along the b axis. Hydrogen bonds are drawn as dashed red lines.

Crystal data

(C8H20N2)[PbI4]F(000) = 752
Mr = 859.05Dx = 3.043 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6011 reflections
a = 12.2793 (17) Åθ = 3.0–28.2°
b = 8.7413 (12) ŵ = 15.56 mm1
c = 8.7829 (13) ÅT = 173 K
β = 95.922 (3)°Plate, orange
V = 937.7 (2) Å30.36 × 0.26 × 0.08 mm
Z = 2

Data collection

Bruker APEXII CCD area-detector diffractometer2264 independent reflections
Radiation source: fine-focus sealed tube2085 reflections with I > 2σ(I)
graphiteRint = 0.080
[var phi] and ω scansθmax = 28.0°, θmin = 1.7°
Absorption correction: integration (XPREP; Bruker, 2005)h = −16→16
Tmin = 0.043, Tmax = 0.288k = −11→10
5435 measured reflectionsl = −9→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.093H-atom parameters constrained
S = 1.08w = 1/[σ2(Fo2) + (0.0511P)2 + 1.0393P] where P = (Fo2 + 2Fc2)/3
2264 reflections(Δ/σ)max = 0.009
70 parametersΔρmax = 1.76 e Å3
0 restraintsΔρmin = −2.79 e Å3

Special details

Experimental. Numerical intergration absorption corrections based on indexed crystal faces were applied using the XPREP routine (Bruker, 2005)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.2676 (6)0.0434 (9)−0.4667 (9)0.0333 (15)
H1A0.27730.1355−0.40110.040*
H1B0.22160.0719−0.56170.040*
C20.3794 (6)−0.0123 (8)−0.5065 (8)0.0273 (15)
H20.3672−0.0991−0.58040.033*
C30.4366 (6)0.1194 (9)−0.5867 (8)0.0306 (14)
H3A0.38900.1529−0.67850.037*
H3B0.44750.2077−0.51620.037*
C40.4542 (6)−0.0685 (9)−0.3667 (8)0.0299 (14)
H4A0.46540.0151−0.29060.036*
H4B0.4187−0.1550−0.31830.036*
N10.2111 (5)−0.0797 (7)−0.3841 (6)0.0274 (12)
H1C0.1450−0.0448−0.36100.041*
H1D0.2531−0.1050−0.29620.041*
H1E0.2012−0.1637−0.44510.041*
I1−0.26315 (4)0.02539 (5)−0.02301 (5)0.02714 (13)
I20.00031 (4)0.18981 (5)−0.30914 (4)0.02605 (14)
Pb10.00000.00000.00000.01915 (11)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.036 (4)0.026 (3)0.039 (4)0.002 (3)0.005 (3)0.004 (3)
C20.027 (4)0.027 (4)0.028 (3)−0.003 (3)0.003 (3)−0.001 (2)
C30.028 (3)0.030 (3)0.034 (3)0.000 (3)0.001 (3)0.010 (3)
C40.023 (3)0.035 (4)0.031 (3)−0.003 (3)0.002 (3)0.008 (3)
N10.025 (3)0.031 (3)0.026 (3)−0.004 (2)0.003 (2)−0.001 (2)
I10.0262 (2)0.0257 (2)0.0288 (2)−0.00327 (17)−0.00048 (18)−0.00028 (16)
I20.0356 (2)0.0218 (2)0.0212 (2)0.00569 (16)0.00513 (16)0.00779 (14)
Pb10.02537 (19)0.01599 (17)0.01602 (16)0.00087 (11)0.00182 (12)0.00032 (10)

Geometric parameters (Å, °)

C1—N11.507 (9)C4—H4B0.9900
C1—C21.530 (10)N1—H1C0.9100
C1—H1A0.9900N1—H1D0.9100
C1—H1B0.9900N1—H1E0.9100
C2—C41.536 (10)I1—Pb13.2243 (6)
C2—C31.554 (9)I2—Pb13.1824 (5)
C2—H21.0000I2—Pb1ii3.1875 (5)
C3—C4i1.510 (10)Pb1—I2iii3.1824 (5)
C3—H3A0.9900Pb1—I2iv3.1875 (5)
C3—H3B0.9900Pb1—I2v3.1875 (5)
C4—C3i1.510 (10)Pb1—I1iii3.2243 (6)
C4—H4A0.9900
N1—C1—C2110.5 (6)H4A—C4—H4B108.1
N1—C1—H1A109.5C1—N1—H1C109.5
C2—C1—H1A109.5C1—N1—H1D109.5
N1—C1—H1B109.5H1C—N1—H1D109.5
C2—C1—H1B109.5C1—N1—H1E109.5
H1A—C1—H1B108.1H1C—N1—H1E109.5
C4—C2—C1113.3 (6)H1D—N1—H1E109.5
C4—C2—C3109.8 (6)Pb1—I2—Pb1ii153.144 (15)
C1—C2—C3109.0 (6)I2—Pb1—I2iii180.00 (2)
C4—C2—H2108.2I2—Pb1—I2iv90.294 (11)
C1—C2—H2108.2I2iii—Pb1—I2iv89.706 (11)
C3—C2—H2108.2I2—Pb1—I2v89.706 (11)
C4i—C3—C2111.1 (6)I2iii—Pb1—I2v90.294 (11)
C4i—C3—H3A109.4I2iv—Pb1—I2v180.0
C2—C3—H3A109.4I2—Pb1—I1iii89.999 (12)
C4i—C3—H3B109.4I2iii—Pb1—I1iii90.001 (12)
C2—C3—H3B109.4I2iv—Pb1—I1iii94.518 (12)
H3A—C3—H3B108.0I2v—Pb1—I1iii85.482 (12)
C3i—C4—C2110.6 (6)I2—Pb1—I190.001 (12)
C3i—C4—H4A109.5I2iii—Pb1—I189.999 (12)
C2—C4—H4A109.5I2iv—Pb1—I185.482 (12)
C3i—C4—H4B109.5I2v—Pb1—I194.518 (12)
C2—C4—H4B109.5I1iii—Pb1—I1180.0
N1—C1—C2—C4−55.7 (8)C3—C2—C4—C3i−57.0 (9)
N1—C1—C2—C3−178.2 (6)Pb1ii—I2—Pb1—I2iv−0.35 (4)
C4—C2—C3—C4i57.3 (8)Pb1ii—I2—Pb1—I2v179.65 (4)
C1—C2—C3—C4i−178.1 (6)Pb1ii—I2—Pb1—I1iii−94.87 (4)
C1—C2—C4—C3i−179.1 (6)Pb1ii—I2—Pb1—I185.13 (4)

Symmetry codes: (i) −x+1, −y, −z−1; (ii) −x, y+1/2, −z−1/2; (iii) −x, −y, −z; (iv) x, −y+1/2, z+1/2; (v) −x, y−1/2, −z−1/2.

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1D···I1iii0.912.883.598 (5)137
N1—H1E···I1v0.912.843.619 (6)144
N1—H1E···I2vi0.913.123.672 (6)121
N1—H1C···I20.912.783.611 (6)152

Symmetry codes: (iii) −x, −y, −z; (v) −x, y−1/2, −z−1/2; (vi) −x, −y, −z−1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2340).

References

  • Billing, D. G. & Lemmerer, A. (2006). CrystEngComm, 9, 236–244.
  • Brandenburg, K. (1999). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2005). APEX2, SAINT and XPREP Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Mitzi, D. B. (1999). Prog. Inorg. Chem.48, 1–121.
  • Rayner, M. K. & Billing, D. G. (2010a). Acta Cryst. E66, m659. [PMC free article] [PubMed]
  • Rayner, M. K. & Billing, D. G. (2010b). Acta Cryst. E66, m658. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography