PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m610–m611.
Published online 2010 May 8. doi:  10.1107/S1600536810015631
PMCID: PMC2979547

Aqua­bis(1H-benzimidazole-2-carboxyl­ato-κ2 O,N 3)zinc(II)

Abstract

In the title compound, [Zn(C8H5N2O2)2(H2O)], the ZnII ion is coordinated in each case by a carboxyl­ate O atom and an imidazole N atom from two different benzimidazole-2-carboxyl­ate (BIC) ligands and one water O atom in a trigonal-bipyramidal geometry. In the complex mol­ecule, the two benzimidazole planes are twisted, making a dihedral angle of 55.93 (11)°. The three-dimensional framework is organized by inter­molecular N—H(...)O hydrogen bonding and O—H(...)O inter­actions and π–π inter­actions between adjacent benzimidazole rings [centroid–centroid distance = 3.586 (3) Å].

Related literature

For the biological activity of zinc complexes, see: Yoshikawa et al. (2001 [triangle]); Adachi et al. (2004 [triangle]). For the biological activity of benzimidazole derivatives, see: Shingalapur et al. (2009 [triangle]). For zinc N-heterocyclic or their carboxyl­ate complexes, see: He (2006 [triangle]); Li et al. (2007 [triangle]); Gao et al. (2005 [triangle]). For the structural index τ, see: Addison et al. (1984 [triangle]). For related structures, see: Liu et al. (2004 [triangle]); Lin (2006 [triangle]); Zhong et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m610-scheme1.jpg

Experimental

Crystal data

  • [Zn(C8H5N2O2)2(H2O)]
  • M r = 405.67
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m610-efi1.jpg
  • a = 25.9702 (15) Å
  • b = 10.0870 (6) Å
  • c = 16.7885 (10) Å
  • β = 129.21 (3)°
  • V = 3407.8 (14) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 1.48 mm−1
  • T = 293 K
  • 0.20 × 0.10 × 0.10 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • Absorption correction: ψ scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.757, T max = 0.866
  • 6178 measured reflections
  • 3097 independent reflections
  • 2368 reflections with I > 2σ(I)
  • R int = 0.039
  • 3 standard reflections every 120 min intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.101
  • S = 0.99
  • 3097 reflections
  • 235 parameters
  • H-atom parameters constrained
  • Δρmax = 0.56 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: CAD-4 EXPRESS (Enraf–Nonius, 1994 [triangle]); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: CrystalStructure (Rigaku, 2002 [triangle]).

Table 1
Selected geometric parameters (Å, °)
Table 2
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015631/kp2256sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015631/kp2256Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Zinc complexes with ligands such as amino acids, picolinic acid, vitamins, and allixin (isolated from garlic) are found to have high in vitro insulinomimetric activity and in vivo anti-diabetic activity (Yoshikawa et al., 2001; Adachi et al., 2004). Although many zinc N-heterocyclic or their carboxylate complexes have been reported(He, 2006; Li et al., 2007; Gao et al., 2005), those related to the benzimidazole-2-carboxylic acid(BICA) are reported rearly. Benzimidazole analogues are known to exhibit a wide variety of pharmacological properties; benzimidazole is an important pharmacophore and privileged structure in medicinal chemistry encompassing a diverse range of biological activities (Shingalapur et al., 2009). In the viewpoint of constructing new functional complex, we prepared aqua(1H-benzo[d]imidazole-2-carboxylato-κ2O:N)-zinc(II) with the formula [Zn(C8H5N2O2)2(H2O)] (I) and report its structure.

In (I) Zn II coordination sphere is completed by carboxylato O atom and imidazole N atom from two different ligand molecules and one O atom from water (Fig. 1). The two BICA molecules are deprotonated to make the molecule neutral, then the BIC- ligand behaves as a chelating unit that binds through the imidazole N atom and carboxylato O atom, giving a five-membered chelate ring. The structural index τ (Addison et al. 1984) which represents the relative amount of trigonality of the five-coordination geometry as τ = 0 for a square pyramid and τ = 1 for a trigonal bipyramida in (I) is 0.791, therefore, the coordination geometry around ZnII seems to be classified as a trigonal bipyramid rather than a square pyramid; N3, O5, and N1 atoms form the equatorial trigonal plane indicated by the angle of O5-Zn-N1 and O5-Zn1-N3 being 116.39 (12) ° and 115.42 (12) °, respectively. The axial position occupy O2 and O4 atoms; O4-Zn-O2 is the only combination with bonding angle close to 180 degrees. Therefore, the five-coordination geometry around Zn is classified as a distorted trigonal bipyramid with ZnN2O3 core. Compared with the other analogous zinc complexes, the bond distance of ZnII and carboxylato O in (I) is in the normal range from 2.1445 (12) Å to 2.201 (3) Å (Table 1), while Zn—O5(water O atom) distance is significantly shorter than in the similar aqua zinc structures, such as 2.1565 (14) Å in [Zn(H2IDC)2(H2O)2] (where H2IDC is the 5-carboxy-1H-imidazole-4-carboxylate ligand (Liu et al., 2004), 2.020 (3) Å in {[Zn(HIDC)(H2O)].0.5H2O}n (HIDC is the imidazole-4,5-dicarboxylate ligand) (Lin, 2006) and 2.1491 (12) Å in [Zn(C5H3N2O4)2(H2O)2].C10H8N2(Zhong et al., 2006).

The benzimidazole moiety in each ligand is nearly coplanar with the mean deviation from plane by 0.0059 Å and 0.0042 Å for ring C1—C7/N1/N2 and C10—C16/N3/N4, respectively. Around ZnII two five-chelate rings are formed with slightly different conformations. The ring Zn1/N1/C7/C8/O2, adopts an envelope conformation with the deviation of Zn atom from the mean plane by 0.0686 (16) Å whereas the related ring Zn1/N3/C10/C9/O4 seems to be planar with the corresponding distance 0.0056 (14) Å. The dihedral angle of two benzimidazole groups around ZnII is about 55.93 (11) ° leading to the intersection mode in the stack (Fig.2). In the ab plane, the whole zig-zag motif is bulit up, together with the π–π interactions between the adjacent benzimidazole planes along the axis a. The pairs of the two benzimidazole rings are oriented almost parallel and overlap face to face with the Cg···Cg distances of 3.586 (3) Å (where Cg is the center of gravity of the benzimidazole ring) for the centroid···centroid separations of rings N1 / N2 / C1— C7 and N1 / N2 / C1— C7(symmetry code: 1-x, y, 3/2-z). The three-dimensional framework is defined by intermolecular hydrogen bonds involving water molecules, the uncoordinated imidazole N atoms, and carboxylate O atoms(N—H···O and O—H···O, Table 2 and Fig. 2).

Experimental

1H-benzo[d]imidazole-2-carboxylic acid(20 mg, 0.12 mmol) and zinc chloride dihydrate (10 mg, 0.06 mmol) were separately dissolved in 5 ml methanol. The solutions were mixed and stirred magnetically for 2 h. Colourless single crystals were isolated from the solution at room temperature over several days.

Refinement

At first, all H atoms were located from the difference Fourier maps, and then were treated as riding [C—H = 0.93 Å ; Uiso(H) = 1.2 times Ueq; imidazole N—H = 0.86 Å and O—H = 0.85 Å; Uiso(H) = 1.5 times Ueq]. The weighting schemes were optimized .

Figures

Fig. 1.
ORTEP drawing of (I) with the atomic numbering scheme. Ellipsoids for non-H atoms corresponding to 50 % probability.
Fig. 2.
Packing drawing of (I) with the hydrogen bonds indicated by dashed lines.

Crystal data

[Zn(C8H5N2O2)2(H2O)]F(000) = 1648
Mr = 405.67Dx = 1.581 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 25 reflections
a = 25.9702 (15) Åθ = 10–13°
b = 10.0870 (6) ŵ = 1.48 mm1
c = 16.7885 (10) ÅT = 293 K
β = 129.21 (3)°Block, colourless
V = 3407.8 (14) Å30.20 × 0.10 × 0.10 mm
Z = 8

Data collection

Enraf–Nonius CAD-4 diffractometer2368 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.039
graphiteθmax = 25.3°, θmin = 2.0°
ω/2θ scansh = −31→31
Absorption correction: ψ scan (ABSCOR; Higashi, 1995)k = 0→12
Tmin = 0.757, Tmax = 0.866l = −20→20
6178 measured reflections3 standard reflections every 120 min
3097 independent reflections intensity decay: 1%

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.101H-atom parameters constrained
S = 0.99w = 1/[σ2(Fo2) + (0.056P)2] where P = (Fo2 + 2Fc2)/3
3097 reflections(Δ/σ)max = 0.001
235 parametersΔρmax = 0.56 e Å3
0 restraintsΔρmin = −0.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Zn10.569627 (17)0.05468 (4)0.69627 (3)0.02900 (14)
O10.50351 (16)0.3274 (3)0.4673 (2)0.0650 (9)
O20.54498 (12)0.1385 (2)0.55532 (17)0.0374 (6)
O30.67653 (12)−0.1506 (2)0.97193 (17)0.0413 (6)
O40.60004 (11)−0.0175 (2)0.84308 (17)0.0364 (6)
O50.48517 (12)−0.0394 (3)0.61712 (19)0.0544 (8)
H5A0.4577−0.03250.55200.065*
H5B0.4758−0.08720.64810.065*
N10.56695 (13)0.2485 (3)0.7205 (2)0.0330 (6)
N20.54861 (16)0.4515 (3)0.6583 (2)0.0433 (8)
H2A0.53750.51460.61560.052*
N30.64903 (12)−0.0562 (3)0.74399 (19)0.0299 (6)
N40.72922 (13)−0.1867 (3)0.8647 (2)0.0392 (7)
H4A0.7536−0.23200.92060.047*
C10.6165 (2)0.4261 (5)0.9534 (3)0.0632 (12)
H1A0.63230.41531.02040.076*
C20.6052 (2)0.5536 (5)0.9134 (3)0.0622 (12)
H2B0.61350.62540.95470.075*
C30.5824 (2)0.5773 (4)0.8158 (3)0.0567 (11)
H3A0.57500.66280.79000.068*
C40.57069 (19)0.4657 (3)0.7569 (3)0.0422 (9)
C50.58192 (16)0.3372 (4)0.7962 (3)0.0353 (8)
C60.60498 (19)0.3157 (4)0.8957 (3)0.0466 (9)
H6A0.61230.23050.92220.056*
C70.54749 (17)0.3217 (3)0.6408 (3)0.0351 (8)
C80.52981 (18)0.2603 (4)0.5450 (3)0.0377 (8)
C90.64989 (16)−0.0943 (3)0.8895 (2)0.0309 (7)
C100.67732 (15)−0.1125 (3)0.8339 (2)0.0295 (7)
C110.68567 (15)−0.0954 (4)0.7139 (2)0.0318 (8)
C120.67916 (17)−0.0663 (4)0.6270 (3)0.0415 (9)
H12A0.6452−0.01200.57530.050*
C130.72500 (19)−0.1208 (4)0.6205 (3)0.0514 (11)
H13A0.7224−0.10140.56400.062*
C140.7749 (2)−0.2041 (5)0.6966 (3)0.0587 (12)
H14A0.8042−0.24100.68850.070*
C150.78262 (19)−0.2338 (4)0.7829 (3)0.0547 (11)
H15A0.8167−0.28860.83410.066*
C160.73686 (17)−0.1779 (4)0.7905 (3)0.0378 (8)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Zn10.0261 (2)0.0311 (2)0.0279 (2)0.00695 (17)0.01612 (17)0.00661 (17)
O10.110 (3)0.0434 (17)0.0441 (16)0.0153 (17)0.0498 (18)0.0146 (14)
O20.0499 (14)0.0327 (14)0.0329 (13)0.0076 (11)0.0277 (12)0.0067 (11)
O30.0463 (14)0.0491 (16)0.0300 (13)0.0162 (12)0.0248 (12)0.0143 (12)
O40.0365 (13)0.0456 (15)0.0319 (12)0.0156 (11)0.0238 (11)0.0129 (11)
O50.0410 (14)0.089 (2)0.0384 (15)−0.0239 (15)0.0277 (13)−0.0217 (14)
N10.0356 (15)0.0309 (15)0.0288 (15)0.0036 (12)0.0187 (13)0.0037 (12)
N20.0580 (19)0.0310 (17)0.0414 (17)0.0026 (15)0.0316 (16)0.0080 (14)
N30.0272 (14)0.0362 (15)0.0250 (14)0.0105 (12)0.0159 (12)0.0095 (12)
N40.0362 (16)0.0500 (19)0.0305 (15)0.0204 (14)0.0206 (14)0.0189 (14)
C10.068 (3)0.075 (3)0.044 (2)−0.011 (3)0.034 (2)−0.014 (2)
C20.074 (3)0.054 (3)0.056 (3)−0.014 (2)0.041 (3)−0.025 (2)
C30.070 (3)0.038 (2)0.063 (3)−0.007 (2)0.042 (3)−0.011 (2)
C40.047 (2)0.035 (2)0.045 (2)−0.0039 (16)0.0293 (19)−0.0041 (17)
C50.0328 (18)0.039 (2)0.0334 (19)0.0000 (16)0.0204 (16)−0.0015 (16)
C60.052 (2)0.048 (2)0.034 (2)0.0009 (19)0.0247 (19)0.0001 (18)
C70.041 (2)0.0280 (19)0.036 (2)0.0033 (15)0.0245 (17)0.0047 (16)
C80.045 (2)0.037 (2)0.0331 (19)0.0056 (17)0.0257 (17)0.0087 (16)
C90.0310 (18)0.0343 (18)0.0245 (17)0.0022 (15)0.0161 (15)0.0026 (15)
C100.0247 (16)0.0313 (17)0.0285 (17)0.0064 (14)0.0149 (14)0.0045 (15)
C110.0259 (16)0.0411 (19)0.0263 (17)0.0038 (14)0.0156 (15)0.0011 (15)
C120.0363 (19)0.054 (2)0.0334 (19)0.0130 (18)0.0216 (17)0.0142 (18)
C130.046 (2)0.074 (3)0.042 (2)0.014 (2)0.032 (2)0.013 (2)
C140.046 (2)0.086 (3)0.059 (3)0.026 (2)0.040 (2)0.017 (2)
C150.042 (2)0.076 (3)0.049 (2)0.031 (2)0.031 (2)0.024 (2)
C160.0327 (18)0.047 (2)0.0341 (19)0.0130 (16)0.0212 (16)0.0104 (17)

Geometric parameters (Å, °)

Zn1—O51.947 (3)C1—C21.393 (6)
Zn1—N12.007 (3)C1—H1A0.9300
Zn1—N32.014 (2)C2—C31.365 (6)
Zn1—O42.184 (2)C2—H2B0.9300
Zn1—O22.193 (2)C3—C41.400 (5)
O1—C81.224 (4)C3—H3A0.9300
O2—C81.268 (4)C4—C51.398 (5)
O3—C91.227 (4)C5—C61.390 (5)
O4—C91.268 (4)C6—H6A0.9300
O5—H5A0.8500C7—C81.500 (5)
O5—H5B0.8500C9—C101.502 (4)
N1—C71.318 (4)C11—C121.389 (5)
N1—C51.394 (4)C11—C161.397 (5)
N2—C71.338 (4)C12—C131.377 (5)
N2—C41.375 (5)C12—H12A0.9300
N2—H2A0.8600C13—C141.387 (5)
N3—C101.318 (4)C13—H13A0.9300
N3—C111.387 (4)C14—C151.366 (5)
N4—C101.328 (4)C14—H14A0.9300
N4—C161.383 (4)C15—C161.391 (5)
N4—H4A0.8600C15—H15A0.9300
C1—C61.379 (6)
O5—Zn1—N1116.39 (12)C3—C4—C5121.7 (4)
O5—Zn1—N3115.42 (12)N1—C5—C6131.0 (3)
N1—Zn1—N3128.19 (11)N1—C5—C4108.1 (3)
O5—Zn1—O493.18 (11)C6—C5—C4120.9 (3)
N1—Zn1—O497.49 (10)C1—C6—C5117.1 (4)
N3—Zn1—O479.46 (9)C1—C6—H6A121.5
O5—Zn1—O290.98 (11)C5—C6—H6A121.5
N1—Zn1—O279.56 (10)N1—C7—N2112.6 (3)
N3—Zn1—O299.82 (10)N1—C7—C8121.2 (3)
O4—Zn1—O2175.67 (9)N2—C7—C8126.1 (3)
C8—O2—Zn1112.0 (2)O1—C8—O2126.7 (3)
C9—O4—Zn1113.4 (2)O1—C8—C7120.0 (3)
Zn1—O5—H5A120.4O2—C8—C7113.3 (3)
Zn1—O5—H5B119.6O3—C9—O4127.2 (3)
H5A—O5—H5B120.0O3—C9—C10119.6 (3)
C7—N1—C5105.8 (3)O4—C9—C10113.2 (3)
C7—N1—Zn1112.4 (2)N3—C10—N4112.5 (3)
C5—N1—Zn1141.7 (2)N3—C10—C9121.3 (3)
C7—N2—C4107.5 (3)N4—C10—C9126.2 (3)
C7—N2—H2A126.3C12—C11—N3131.7 (3)
C4—N2—H2A126.3C12—C11—C16120.3 (3)
C10—N3—C11106.3 (3)N3—C11—C16107.9 (3)
C10—N3—Zn1112.6 (2)C13—C12—C11117.5 (3)
C11—N3—Zn1141.2 (2)C13—C12—H12A121.3
C10—N4—C16107.5 (3)C11—C12—H12A121.3
C10—N4—H4A126.2C12—C13—C14121.4 (4)
C16—N4—H4A126.2C12—C13—H13A119.3
C6—C1—C2121.4 (4)C14—C13—H13A119.3
C6—C1—H1A119.3C15—C14—C13122.3 (4)
C2—C1—H1A119.3C15—C14—H14A118.9
C3—C2—C1122.6 (4)C13—C14—H14A118.9
C3—C2—H2B118.7C14—C15—C16116.6 (3)
C1—C2—H2B118.7C14—C15—H15A121.7
C2—C3—C4116.3 (4)C16—C15—H15A121.7
C2—C3—H3A121.9N4—C16—C15132.3 (3)
C4—C3—H3A121.9N4—C16—C11105.8 (3)
N2—C4—C3132.3 (4)C15—C16—C11121.9 (3)
N2—C4—C5106.0 (3)
O5—Zn1—O2—C8105.9 (2)Zn1—N1—C7—N2−177.1 (2)
N1—Zn1—O2—C8−10.8 (2)C5—N1—C7—C8177.4 (3)
N3—Zn1—O2—C8−138.1 (2)Zn1—N1—C7—C80.2 (4)
O5—Zn1—O4—C9113.9 (2)C4—N2—C7—N10.3 (4)
N1—Zn1—O4—C9−128.9 (2)C4—N2—C7—C8−176.9 (3)
N3—Zn1—O4—C9−1.3 (2)Zn1—O2—C8—O1−166.9 (3)
O5—Zn1—N1—C7−80.8 (3)Zn1—O2—C8—C713.2 (4)
N3—Zn1—N1—C799.4 (2)N1—C7—C8—O1170.2 (3)
O4—Zn1—N1—C7−178.1 (2)N2—C7—C8—O1−12.9 (6)
O2—Zn1—N1—C75.1 (2)N1—C7—C8—O2−9.9 (5)
O5—Zn1—N1—C5103.6 (4)N2—C7—C8—O2167.0 (3)
N3—Zn1—N1—C5−76.2 (4)Zn1—O4—C9—O3−178.6 (3)
O4—Zn1—N1—C56.3 (4)Zn1—O4—C9—C102.2 (4)
O2—Zn1—N1—C5−170.5 (4)C11—N3—C10—N4−0.7 (4)
O5—Zn1—N3—C10−88.5 (2)Zn1—N3—C10—N4179.3 (2)
N1—Zn1—N3—C1091.3 (3)C11—N3—C10—C9−178.7 (3)
O4—Zn1—N3—C100.0 (2)Zn1—N3—C10—C91.3 (4)
O2—Zn1—N3—C10175.6 (2)C16—N4—C10—N30.9 (4)
O5—Zn1—N3—C1191.5 (4)C16—N4—C10—C9178.9 (3)
N1—Zn1—N3—C11−88.7 (4)O3—C9—C10—N3178.3 (3)
O4—Zn1—N3—C11180.0 (4)O4—C9—C10—N3−2.5 (5)
O2—Zn1—N3—C11−4.4 (4)O3—C9—C10—N40.5 (5)
C6—C1—C2—C3−0.2 (7)O4—C9—C10—N4179.8 (3)
C1—C2—C3—C40.1 (7)C10—N3—C11—C12−179.6 (4)
C7—N2—C4—C3179.0 (4)Zn1—N3—C11—C120.4 (7)
C7—N2—C4—C5−0.5 (4)C10—N3—C11—C160.1 (4)
C2—C3—C4—N2−179.5 (4)Zn1—N3—C11—C16−179.8 (3)
C2—C3—C4—C5−0.1 (6)N3—C11—C12—C13179.3 (4)
C7—N1—C5—C6−179.6 (4)C16—C11—C12—C13−0.4 (5)
Zn1—N1—C5—C6−3.8 (6)C11—C12—C13—C141.4 (6)
C7—N1—C5—C4−0.4 (4)C12—C13—C14—C15−1.8 (7)
Zn1—N1—C5—C4175.3 (3)C13—C14—C15—C161.1 (7)
N2—C4—C5—N10.6 (4)C10—N4—C16—C15179.6 (4)
C3—C4—C5—N1−179.0 (3)C10—N4—C16—C11−0.8 (4)
N2—C4—C5—C6179.9 (3)C14—C15—C16—N4179.4 (4)
C3—C4—C5—C60.3 (6)C14—C15—C16—C11−0.1 (6)
C2—C1—C6—C50.4 (6)C12—C11—C16—N4−179.9 (3)
N1—C5—C6—C1178.6 (4)N3—C11—C16—N40.4 (4)
C4—C5—C6—C1−0.5 (6)C12—C11—C16—C15−0.2 (6)
C5—N1—C7—N20.1 (4)N3—C11—C16—C15−180.0 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N2—H2A···O1i0.861.932.765 (4)162
N4—H4A···O3ii0.861.952.778 (4)161
O5—H5A···O2iii0.852.062.670 (4)128
O5—H5B···O4iv0.852.182.695 (5)119

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+3/2, −y−1/2, −z+2; (iii) −x+1, −y, −z+1; (iv) −x+1, y, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2256).

References

  • Adachi, Y., Yoshida, J., Kodera, Y., Kato, A., Yoshikawa, Y., Kojima, Y. & Sakurai, H. (2004). J. Biol. Inorg. Chem.9, 885–893. [PubMed]
  • Addison, A. W., Rao, T. N., Reedijk, J., Rijn, J. V. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  • Enraf–Nonius (1994). CAD-4 Software. Enraf–Nonius, Delft, The Netherlands.
  • Gao, S., Huo, L.-H., Liu, J.-W. & Gu, C.-S. (2005). Acta Cryst. E61, m494–m495.
  • Harms, K. & Wocadlo, S. (1995). XCAD4 University of Marburg, Germany.
  • He, H.-S. (2006). Acta Cryst. E62, m3535–m3536.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Li, X.-M., Dong, Y.-H., Wang, Q.-W. & Liu, B. (2007). Acta Cryst. E63, m1274–m1276.
  • Lin, X.-F. (2006). Acta Cryst. E62, m2039–m2040.
  • Liu, J.-W., Gao, S., Huo, L.-H., Gu, C.-S., Zhao, H. & Zhao, J.-G. (2004). Acta Cryst. E60, m1697–m1699. [PubMed]
  • Rigaku (2002). CrystalStructure Rigaku Corporation, Yokyo, Japan.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Shingalapur, R. V., Hosamani, K. M. & Keri, R. S. (2009). Eur. J. Med. Chem.44, 4244–4248. [PubMed]
  • Yoshikawa, Y., Ueda, E., Suzuki, Y., Yanagihara, N., Sakurai, H. & Kojima, Y. (2001). Chem. Pharm. Bull.49, 652–654. [PubMed]
  • Zhong, R.-Q., Zou, R.-Q. & Xu, Q. (2006). Acta Cryst. E62, m2789–m2790.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography