PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m664.
Published online 2010 May 19. doi:  10.1107/S1600536810017319
PMCID: PMC2979546

[(Z)-O-Methyl N-(3-chloro­phen­yl)thio­carbamato-κS](triphenyl­phosphine-κP)gold(I)

Abstract

The Au atom in the title compound, [Au(C8H7ClNOS)(C18H15P)], exists within a slightly distorted linear geometry defined by an S,P-donor set [S—Au—P angle = 174.61 (4)°], with the distortion related to a short intra­molecular Au(...)O contact [2.988 (3) Å]. In the crystal structure, mol­ecules are arranged into supra­molecular chains along the b axis by C—H(...)π inter­actions.

Related literature

For the structural systematics and luminescence properties of phosphinegold(I) carbonimidothio­ates, see: Ho et al. (2006 [triangle]); Ho & Tiekink (2007 [triangle]); Kuan et al. (2008 [triangle]). For the synthesis, see: Hall et al. (1993 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m664-scheme1.jpg

Experimental

Crystal data

  • [Au(C8H7ClNOS)(C18H15P)]
  • M r = 659.89
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m664-efi1.jpg
  • a = 10.4236 (8) Å
  • b = 10.6961 (8) Å
  • c = 12.7439 (9) Å
  • α = 72.724 (2)°
  • β = 66.105 (1)°
  • γ = 72.530 (2)°
  • V = 1213.83 (16) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 6.34 mm−1
  • T = 223 K
  • 0.19 × 0.08 × 0.05 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2000 [triangle]) T min = 0.515, T max = 1
  • 8630 measured reflections
  • 5525 independent reflections
  • 4787 reflections with I > 2σ(I)
  • R int = 0.023

Refinement

  • R[F 2 > 2σ(F 2)] = 0.032
  • wR(F 2) = 0.089
  • S = 1.05
  • 5525 reflections
  • 290 parameters
  • H-atom parameters constrained
  • Δρmax = 1.16 e Å−3
  • Δρmin = −1.21 e Å−3

Data collection: SMART (Bruker, 2000 [triangle]); cell refinement: SAINT (Bruker, 2000 [triangle]); data reduction: SAINT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017319/lh5042sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017319/lh5042Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The National University of Singapore (grant No. R-143–000-213–112) is thanked for support.

supplementary crystallographic information

Comment

The remarkable propensity of molecules with the general formula R3PAu[SC(OR')═ NR''], for R, R' and R'' = alkyl and aryl, to provide diffraction quality crystals have proved useful for systematic crystal engineering studies (Ho et al., 2006; Ho & Tiekink, 2007; Kuan et al., 2008). The structure of the title compound, (I), was investigated in the context of the above.

The nearly linear SP coordination geometry observed for the Au atom in (I), Fig. 1, is defined by phosphine and thiolate ligands, Table 1. The deviation from the ideal linearity [S—Au—P = 174.61 (4) °] is related to a short intramolecular Au···O contact [2.988 (3) Å]. With the exception of the p-tolyl derivatives (Kuan et al., 2008), the overall molecular conformation (including close Au···.O contacts) conforms to the majority of related compounds having monodentate phosphine ligands.

The major feature of the crystal packing is the presence of C–H···π interactions that lead to the formation of supramolecular chains along the b axis, Fig. 2 and Table 2. Notably, the Cl-substituted benzene ring accepts two such interactions also donates one. Chains are arranged into layers in the (1 0 1) plane, Fig. 3.

Experimental

Compound (I) was prepared following the standard literature procedure from the reaction of Ph3AuCl and MeOC(═S)N(H)(C6H4Cl-3) in the presence of NaOH (Hall et al., 1993). Crystals were obtained by the slow evaporation of a CHCl3/hexane (3/1) solution held at room temperature.

Refinement

The H atoms were geometrically placed (C—H = 0.94–0.97 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(C). The maximum and minimum residual electron density peaks of 1.16 and 1.21 e Å-3, respectively, were located 0.84 Å and 0.88 Å from the Au atom.

Figures

Fig. 1.
Molecular structure of (I) showing atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A supramolecular chain along the b axis, highlighting the pivotal role played by the N-bound benzene ring in the formation of donor and acceptor C–H···π interactions
Fig. 3.
A view in projection along the b axis of the crystal packing in (I), highlighting the stacking of layers mediated by the C–H···π contacts (shown as purple dashed lines).

Crystal data

[Au(C8H7ClNOS)(C18H15P)]Z = 2
Mr = 659.89F(000) = 640
Triclinic, P1Dx = 1.805 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.4236 (8) ÅCell parameters from 6911 reflections
b = 10.6961 (8) Åθ = 1.8–30.1°
c = 12.7439 (9) ŵ = 6.34 mm1
α = 72.724 (2)°T = 223 K
β = 66.105 (1)°Block, colourless
γ = 72.530 (2)°0.19 × 0.08 × 0.05 mm
V = 1213.83 (16) Å3

Data collection

Bruker SMART CCD diffractometer5525 independent reflections
Radiation source: fine-focus sealed tube4787 reflections with I > 2σ(I)
graphiteRint = 0.023
ω scansθmax = 27.5°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2000)h = −11→13
Tmin = 0.515, Tmax = 1k = −13→13
8630 measured reflectionsl = −15→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0473P)2] where P = (Fo2 + 2Fc2)/3
5525 reflections(Δ/σ)max < 0.001
290 parametersΔρmax = 1.16 e Å3
0 restraintsΔρmin = −1.21 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Au0.11162 (2)0.105503 (16)0.249566 (14)0.03318 (8)
Cl10.29679 (17)−0.34461 (14)−0.25655 (13)0.0480 (3)
S10.1802 (2)−0.03071 (14)0.11917 (12)0.0569 (5)
P10.05527 (13)0.25261 (11)0.36314 (10)0.0234 (2)
O10.2184 (4)0.2044 (3)−0.0097 (3)0.0418 (9)
N10.3288 (5)0.0379 (4)−0.1105 (3)0.0349 (9)
C10.2538 (6)0.0735 (5)−0.0159 (4)0.0341 (11)
C20.3735 (5)−0.0998 (5)−0.1156 (4)0.0316 (10)
C30.3166 (5)−0.1501 (5)−0.1734 (4)0.0314 (10)
H30.2451−0.0950−0.20350.038*
C40.3677 (5)−0.2828 (5)−0.1855 (4)0.0317 (10)
C50.4734 (6)−0.3662 (5)−0.1412 (4)0.0371 (12)
H50.5049−0.4566−0.14740.045*
C60.5304 (6)−0.3132 (6)−0.0882 (5)0.0409 (12)
H60.6033−0.3676−0.05940.049*
C70.4820 (6)−0.1809 (5)−0.0766 (4)0.0363 (11)
H70.5239−0.1460−0.04160.044*
C80.2819 (8)0.2932 (5)−0.1111 (5)0.0521 (15)
H8A0.38550.2663−0.13390.078*
H8B0.25150.3829−0.09560.078*
H8C0.25280.2917−0.17390.078*
C90.0939 (5)0.4105 (4)0.2678 (4)0.0234 (9)
C100.0614 (5)0.4495 (5)0.1642 (4)0.0304 (10)
H100.02100.39450.14620.037*
C110.0890 (6)0.5678 (5)0.0901 (5)0.0399 (12)
H110.06510.59490.02190.048*
C120.1513 (6)0.6478 (5)0.1140 (4)0.0343 (11)
H120.17030.72860.06180.041*
C130.1852 (5)0.6108 (5)0.2118 (5)0.0371 (12)
H130.22860.66560.22710.044*
C140.1562 (5)0.4911 (4)0.2909 (4)0.0282 (10)
H140.17910.46610.35940.034*
C15−0.1311 (5)0.2901 (5)0.4571 (4)0.0275 (10)
C16−0.2001 (6)0.1849 (6)0.5219 (5)0.0405 (12)
H16−0.15210.09650.51430.049*
C17−0.3406 (6)0.2107 (7)0.5980 (5)0.0540 (17)
H17−0.38680.13930.64370.065*
C18−0.4121 (6)0.3393 (7)0.6068 (5)0.0527 (16)
H18−0.50810.35580.65690.063*
C19−0.3451 (6)0.4442 (6)0.5434 (5)0.0435 (13)
H19−0.39420.53220.55120.052*
C20−0.2039 (5)0.4195 (5)0.4673 (4)0.0334 (11)
H20−0.15800.49130.42270.040*
C210.1557 (5)0.2115 (4)0.4603 (4)0.0239 (9)
C220.3060 (5)0.1834 (5)0.4125 (4)0.0351 (11)
H220.35220.18290.33210.042*
C230.3858 (6)0.1567 (5)0.4825 (5)0.0407 (12)
H230.48640.14080.44970.049*
C240.3169 (6)0.1532 (5)0.6035 (5)0.0387 (12)
H240.37160.13450.65170.046*
C250.1711 (6)0.1769 (6)0.6509 (4)0.0398 (12)
H250.12570.17250.73200.048*
C260.0902 (5)0.2070 (5)0.5816 (4)0.0340 (11)
H26−0.01040.22500.61530.041*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Au0.05238 (14)0.02569 (11)0.02024 (10)−0.01321 (8)−0.00694 (8)−0.00573 (7)
Cl10.0597 (9)0.0487 (8)0.0462 (8)−0.0174 (7)−0.0213 (7)−0.0137 (6)
S10.1055 (13)0.0342 (7)0.0234 (6)−0.0339 (8)0.0019 (7)−0.0102 (5)
P10.0305 (6)0.0229 (5)0.0167 (5)−0.0074 (5)−0.0073 (4)−0.0035 (4)
O10.069 (3)0.0284 (17)0.0234 (17)−0.0170 (17)−0.0080 (17)−0.0037 (14)
N10.044 (2)0.037 (2)0.021 (2)−0.0117 (19)−0.0066 (18)−0.0065 (17)
C10.050 (3)0.033 (2)0.023 (2)−0.018 (2)−0.009 (2)−0.0052 (19)
C20.034 (3)0.039 (3)0.019 (2)−0.009 (2)−0.0034 (19)−0.0090 (19)
C30.034 (3)0.034 (2)0.022 (2)−0.005 (2)−0.0081 (19)−0.0022 (19)
C40.033 (3)0.042 (3)0.020 (2)−0.012 (2)−0.0041 (19)−0.010 (2)
C50.036 (3)0.034 (3)0.031 (3)−0.002 (2)−0.006 (2)−0.007 (2)
C60.033 (3)0.052 (3)0.030 (3)−0.001 (2)−0.010 (2)−0.006 (2)
C70.039 (3)0.047 (3)0.024 (2)−0.009 (2)−0.013 (2)−0.007 (2)
C80.074 (4)0.036 (3)0.039 (3)−0.017 (3)−0.015 (3)0.002 (2)
C90.022 (2)0.023 (2)0.023 (2)−0.0053 (17)−0.0038 (17)−0.0068 (17)
C100.047 (3)0.030 (2)0.021 (2)−0.016 (2)−0.018 (2)0.0012 (18)
C110.054 (3)0.038 (3)0.027 (3)−0.009 (2)−0.017 (2)−0.002 (2)
C120.047 (3)0.025 (2)0.022 (2)−0.012 (2)−0.003 (2)−0.0001 (18)
C130.032 (3)0.029 (2)0.047 (3)−0.010 (2)−0.003 (2)−0.015 (2)
C140.039 (3)0.028 (2)0.023 (2)−0.007 (2)−0.014 (2)−0.0072 (18)
C150.029 (2)0.035 (2)0.025 (2)−0.0115 (19)−0.0122 (19)−0.0060 (19)
C160.041 (3)0.042 (3)0.038 (3)−0.017 (2)−0.018 (2)0.008 (2)
C170.039 (3)0.072 (4)0.047 (3)−0.034 (3)−0.017 (3)0.021 (3)
C180.026 (3)0.087 (5)0.036 (3)−0.008 (3)−0.005 (2)−0.010 (3)
C190.036 (3)0.062 (4)0.034 (3)−0.006 (3)−0.011 (2)−0.017 (3)
C200.030 (3)0.041 (3)0.032 (3)−0.008 (2)−0.011 (2)−0.011 (2)
C210.030 (2)0.022 (2)0.018 (2)−0.0034 (17)−0.0083 (17)−0.0027 (16)
C220.034 (3)0.039 (3)0.022 (2)−0.004 (2)−0.007 (2)0.000 (2)
C230.030 (3)0.044 (3)0.036 (3)−0.002 (2)−0.012 (2)0.004 (2)
C240.038 (3)0.048 (3)0.031 (3)−0.008 (2)−0.019 (2)0.001 (2)
C250.039 (3)0.058 (3)0.021 (2)−0.009 (3)−0.010 (2)−0.007 (2)
C260.026 (2)0.042 (3)0.028 (2)−0.003 (2)−0.004 (2)−0.010 (2)

Geometric parameters (Å, °)

Au—P12.2416 (11)C11—H110.9400
Au—S12.2902 (13)C12—C131.348 (8)
Cl1—C41.731 (5)C12—H120.9400
S1—C11.760 (5)C13—C141.402 (6)
P1—C211.809 (5)C13—H130.9400
P1—C91.813 (4)C14—H140.9400
P1—C151.817 (5)C15—C201.380 (7)
O1—C11.355 (6)C15—C161.385 (6)
O1—C81.401 (6)C16—C171.388 (8)
N1—C11.241 (6)C16—H160.9400
N1—C21.418 (6)C17—C181.367 (9)
C2—C71.374 (7)C17—H170.9400
C2—C31.402 (7)C18—C191.369 (8)
C3—C41.390 (7)C18—H180.9400
C3—H30.9400C19—C201.393 (7)
C4—C51.394 (7)C19—H190.9400
C5—C61.372 (8)C20—H200.9400
C5—H50.9400C21—C221.404 (7)
C6—C71.384 (7)C21—C261.406 (6)
C6—H60.9400C22—C231.368 (8)
C7—H70.9400C22—H220.9400
C8—H8A0.9700C23—C241.407 (7)
C8—H8B0.9700C23—H230.9400
C8—H8C0.9700C24—C251.362 (7)
C9—C141.375 (6)C24—H240.9400
C9—C101.408 (6)C25—C261.366 (7)
C10—C111.365 (7)C25—H250.9400
C10—H100.9400C26—H260.9400
C11—C121.376 (7)
P1—Au—S1174.61 (4)C13—C12—C11120.3 (5)
C1—S1—Au102.46 (16)C13—C12—H12119.8
C21—P1—C9105.6 (2)C11—C12—H12119.8
C21—P1—C15104.4 (2)C12—C13—C14120.4 (5)
C9—P1—C15105.7 (2)C12—C13—H13119.8
C21—P1—Au115.81 (14)C14—C13—H13119.8
C9—P1—Au107.75 (14)C9—C14—C13119.7 (4)
C15—P1—Au116.62 (15)C9—C14—H14120.1
C1—O1—C8116.8 (4)C13—C14—H14120.1
C1—N1—C2120.4 (4)C20—C15—C16119.6 (5)
N1—C1—O1120.4 (4)C20—C15—P1121.9 (4)
N1—C1—S1126.6 (4)C16—C15—P1118.6 (4)
O1—C1—S1113.0 (3)C15—C16—C17119.6 (5)
C7—C2—C3119.4 (5)C15—C16—H16120.2
C7—C2—N1121.4 (5)C17—C16—H16120.2
C3—C2—N1118.8 (5)C18—C17—C16120.4 (5)
C4—C3—C2118.9 (5)C18—C17—H17119.8
C4—C3—H3120.6C16—C17—H17119.8
C2—C3—H3120.6C17—C18—C19120.6 (5)
C3—C4—C5121.4 (5)C17—C18—H18119.7
C3—C4—Cl1118.7 (4)C19—C18—H18119.7
C5—C4—Cl1119.9 (4)C18—C19—C20119.6 (5)
C6—C5—C4118.5 (5)C18—C19—H19120.2
C6—C5—H5120.8C20—C19—H19120.2
C4—C5—H5120.8C15—C20—C19120.3 (5)
C5—C6—C7120.9 (5)C15—C20—H20119.9
C5—C6—H6119.6C19—C20—H20119.9
C7—C6—H6119.6C22—C21—C26118.3 (4)
C2—C7—C6120.9 (5)C22—C21—P1118.6 (3)
C2—C7—H7119.6C26—C21—P1123.1 (4)
C6—C7—H7119.6C23—C22—C21120.3 (5)
O1—C8—H8A109.5C23—C22—H22119.8
O1—C8—H8B109.5C21—C22—H22119.8
H8A—C8—H8B109.5C22—C23—C24119.9 (5)
O1—C8—H8C109.5C22—C23—H23120.0
H8A—C8—H8C109.5C24—C23—H23120.0
H8B—C8—H8C109.5C25—C24—C23120.0 (5)
C14—C9—C10119.2 (4)C25—C24—H24120.0
C14—C9—P1123.0 (4)C23—C24—H24120.0
C10—C9—P1117.8 (3)C24—C25—C26120.7 (5)
C11—C10—C9119.5 (4)C24—C25—H25119.7
C11—C10—H10120.2C26—C25—H25119.7
C9—C10—H10120.2C25—C26—C21120.7 (5)
C10—C11—C12120.8 (5)C25—C26—H26119.6
C10—C11—H11119.6C21—C26—H26119.6
C12—C11—H11119.6
P1—Au—S1—C1−8.4 (7)C11—C12—C13—C14−0.6 (8)
S1—Au—P1—C21−104.7 (7)C10—C9—C14—C130.5 (7)
S1—Au—P1—C913.3 (7)P1—C9—C14—C13178.8 (3)
S1—Au—P1—C15131.8 (7)C12—C13—C14—C90.6 (7)
C2—N1—C1—O1175.9 (5)C21—P1—C15—C2095.9 (4)
C2—N1—C1—S1−5.4 (8)C9—P1—C15—C20−15.2 (5)
C8—O1—C1—N1−6.2 (8)Au—P1—C15—C20−134.9 (4)
C8—O1—C1—S1175.0 (4)C21—P1—C15—C16−82.6 (4)
Au—S1—C1—N1166.0 (5)C9—P1—C15—C16166.2 (4)
Au—S1—C1—O1−15.3 (4)Au—P1—C15—C1646.6 (4)
C1—N1—C2—C7−75.8 (7)C20—C15—C16—C17−1.3 (8)
C1—N1—C2—C3111.4 (6)P1—C15—C16—C17177.3 (4)
C7—C2—C3—C42.6 (7)C15—C16—C17—C181.8 (9)
N1—C2—C3—C4175.6 (4)C16—C17—C18—C19−1.9 (10)
C2—C3—C4—C50.2 (7)C17—C18—C19—C201.5 (9)
C2—C3—C4—Cl1179.8 (3)C16—C15—C20—C190.9 (8)
C3—C4—C5—C6−2.2 (7)P1—C15—C20—C19−177.6 (4)
Cl1—C4—C5—C6178.2 (4)C18—C19—C20—C15−1.0 (8)
C4—C5—C6—C71.4 (8)C9—P1—C21—C22−65.8 (4)
C3—C2—C7—C6−3.4 (7)C15—P1—C21—C22−177.0 (4)
N1—C2—C7—C6−176.2 (5)Au—P1—C21—C2253.3 (4)
C5—C6—C7—C21.4 (8)C9—P1—C21—C26113.8 (4)
C21—P1—C9—C14−14.8 (4)C15—P1—C21—C262.6 (4)
C15—P1—C9—C1495.5 (4)Au—P1—C21—C26−127.1 (4)
Au—P1—C9—C14−139.1 (3)C26—C21—C22—C23−2.0 (7)
C21—P1—C9—C10163.6 (4)P1—C21—C22—C23177.6 (4)
C15—P1—C9—C10−86.1 (4)C21—C22—C23—C242.0 (8)
Au—P1—C9—C1039.2 (4)C22—C23—C24—C25−0.3 (9)
C14—C9—C10—C11−1.5 (7)C23—C24—C25—C26−1.4 (9)
P1—C9—C10—C11−180.0 (4)C24—C25—C26—C211.4 (8)
C9—C10—C11—C121.6 (8)C22—C21—C26—C250.4 (7)
C10—C11—C12—C13−0.5 (8)P1—C21—C26—C25−179.2 (4)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C2–C7 and C9–C14 rings, respectively.
D—H···AD—HH···AD···AD—H···A
C12—H12···Cg1i0.942.823.472 (6)127
C22—H22···Cg1ii0.942.723.565 (5)149
C6—H6···Cg2ii0.942.973.615 (7)127

Symmetry codes: (i) x, y+1, z; (ii) −x+1, −y, −z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5042).

References

  • Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System Technical Report of the Crystallography Laboratory, University of Nijmegen, The Netherlands.
  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Bruker (2000). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hall, V. J., Siasios, G. & Tiekink, E. R. T. (1993). Aust. J. Chem.46, 561–570.
  • Ho, S. Y., Cheng, E. C.-C., Tiekink, E. R. T. & Yam, V. W.-W. (2006). Inorg. Chem.45, 8165–8174. [PubMed]
  • Ho, S. Y. & Tiekink, E. R. T. (2007). CrystEngComm, 9, 368–378.
  • Kuan, F. S., Ho, S. Y., Tadbuppa, P. P. & Tiekink, E. R. T. (2008). CrystEngComm, 10, 548–564.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography