PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1340.
Published online 2010 May 15. doi:  10.1107/S1600536810016855
PMCID: PMC2979542

2-Hydr­oxy-N′-(2-hydr­oxy-4-methoxy­benzyl­idene)-3-methyl­benzohydrazide monohydrate

Abstract

In the title compound, C16H16N2O4·H2O, the dihedral angle between the two benzene rings is 12.4 (2)° and the mol­ecule adopts an E configuration with respect to the C=N bond. There are intra­molecular O—H(...)N and O—H(...)O hydrogen bonds in the hydrazone mol­ecule, which both generate S(6) rings. In the crystal structure, mol­ecules are linked by N—H(...)O and O—H(...)O hydrogen bonds, forming layers parallel to the ab plane. The crystal studied was a non-merohedral twin with a domain ratio of 0.887 (3):0.113 (3).

Related literature

For our previous studies on hydrazones and for background information, see: Han & Zhao (2010a [triangle],b [triangle]). For reference bond-length data, see: Allen et al. (1987 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1340-scheme1.jpg

Experimental

Crystal data

  • C16H16N2O4·H2O
  • M r = 318.32
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1340-efi1.jpg
  • a = 4.488 (1) Å
  • b = 13.494 (2) Å
  • c = 26.089 (3) Å
  • β = 91.630 (2)°
  • V = 1579.3 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.10 mm−1
  • T = 298 K
  • 0.20 × 0.20 × 0.18 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2007 [triangle]) T min = 0.980, T max = 0.982
  • 3429 measured reflections
  • 3429 independent reflections
  • 1584 reflections with I > 2σ(I)

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.136
  • S = 0.82
  • 3429 reflections
  • 211 parameters
  • H-atom parameters constrained
  • Δρmax = 0.17 e Å−3
  • Δρmin = −0.19 e Å−3

Data collection: SMART (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016855/hb5423sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016855/hb5423Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Applied Chemistry Key Subject of Anhui Province (No. 200802187 C).

supplementary crystallographic information

Comment

As a continuation of our work on the structural characterization of hydrazones (Han & Zhao, 2010a,b), we repoprt here the crystal structure of the title compound. The title compound, Fig. 1, consists of a hydrazone molecule and a water molecule of crystallization. The dihedral angle between the two benzene rings is 12.4 (2)°. The molecule adopts an E configuration with respect to the C═N bond. There are intramolecular O–H···N and O–H···O hydrogen bonds in the hydrazone molecule (Table 1). All the bond lengths are within normal ranges (Allen et al., 1987).

In the crystal structure, molecules are linked through intermolecular N–H···O and O–H···O hydrogen bonds (Table 1) to form layers parallel to the ab plane (Fig. 2).

Experimental

A mixture of 4-methoxysalicylaldehyde (0.152 g, 1 mmol) and 2-hydroxy-3-methylbenzohydrazide (0.166 g, 1 mmol) in 50 ml me thanol was stirred at room temperature for 1 h. The mixture was filtered to remove impurities, and then left at room temperature. After a few days, colourless blocks of (I) were formed.

Refinement

The crystal turned out to be a non-merohedral twin (twin law: -1 0 0/0 -1 0/ 0.331 0 1) with a fractional contribution of the minor component of 0.113 (3). Amino H and water H atoms were located from a difference Fourier map and refined isotropically, with N–H, O–H, and H···H distances restrained to 0.90 (1), 0.85 (1), and 1.37 (2) Å, respectively. Other H atoms were positioned geometrically and refined using the riding-model approximation, with C–H = 0.93 or 0.96 Å, O–H = 0.82 Å, and Uiso(H) = 1.2Ueq(C) or Uiso(H) = 1.5Ueq(methyl C and O).

Figures

Fig. 1.
The molecular structure of (I) with 30% probability displacement ellipsoids for non-H atoms. Intramolecular hydrogen bonds are shown as dashed lines.
Fig. 2.
The crystal packing of (I). Hydrogen bonds are shown as dashed lines.

Crystal data

C16H16N2O4·H2OF(000) = 672
Mr = 318.32Dx = 1.339 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1505 reflections
a = 4.488 (1) Åθ = 2.7–24.3°
b = 13.494 (2) ŵ = 0.10 mm1
c = 26.089 (3) ÅT = 298 K
β = 91.630 (2)°Block, colorless
V = 1579.3 (5) Å30.20 × 0.20 × 0.18 mm
Z = 4

Data collection

Bruker SMART CCD diffractometer3429 independent reflections
Radiation source: fine-focus sealed tube1584 reflections with I > 2σ(I)
graphiteRint = 0.0000
ω scansθmax = 27.0°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2007)h = −5→5
Tmin = 0.980, Tmax = 0.982k = −17→17
3429 measured reflectionsl = 0→33

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.136H-atom parameters constrained
S = 0.82w = 1/[σ2(Fo2) + (0.0467P)2] where P = (Fo2 + 2Fc2)/3
3429 reflections(Δ/σ)max < 0.001
211 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = −0.19 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
O1−0.0603 (4)0.34424 (11)0.17742 (7)0.0707 (5)
H10.04160.36190.20240.106*
O2−0.7266 (4)0.47988 (12)0.05036 (6)0.0682 (5)
O30.4757 (4)0.34626 (11)0.30448 (6)0.0750 (6)
O40.8037 (4)0.30326 (11)0.38168 (7)0.0774 (6)
H40.68570.29400.35750.116*
N10.2277 (4)0.47228 (14)0.23782 (7)0.0548 (5)
N20.4287 (4)0.50268 (14)0.27598 (7)0.0529 (5)
H20.46170.56810.27790.063*
C1−0.1155 (5)0.52186 (16)0.17115 (8)0.0501 (6)
C2−0.1891 (5)0.42542 (16)0.15477 (8)0.0507 (6)
C3−0.3910 (5)0.40878 (16)0.11519 (8)0.0528 (6)
H3−0.43810.34430.10530.063*
C4−0.5233 (5)0.48799 (16)0.09027 (8)0.0516 (6)
C5−0.4595 (6)0.58423 (17)0.10571 (9)0.0579 (6)
H5−0.55390.63750.08950.069*
C6−0.2570 (5)0.60000 (17)0.14486 (9)0.0571 (7)
H6−0.21160.66480.15440.069*
C7−0.7804 (7)0.38437 (19)0.02939 (10)0.0779 (9)
H7A−0.59700.35710.01770.117*
H7B−0.92110.38940.00110.117*
H7C−0.85970.34200.05520.117*
C80.0983 (5)0.54235 (18)0.21216 (9)0.0533 (6)
H80.14370.60780.22030.064*
C90.5468 (6)0.43567 (17)0.30853 (9)0.0527 (6)
C100.7606 (5)0.46971 (15)0.34903 (8)0.0482 (6)
C110.8747 (6)0.40063 (16)0.38452 (9)0.0560 (6)
C121.0734 (6)0.42876 (19)0.42418 (9)0.0626 (7)
C131.1545 (6)0.52613 (19)0.42727 (10)0.0713 (8)
H131.28650.54620.45340.086*
C141.0462 (6)0.59542 (18)0.39284 (10)0.0693 (8)
H141.10570.66120.39590.083*
C150.8526 (6)0.56823 (17)0.35429 (9)0.0586 (7)
H150.78080.61570.33120.070*
C161.1935 (7)0.3513 (2)0.46131 (10)0.0915 (10)
H16A1.32860.38200.48570.137*
H16B1.29690.30110.44280.137*
H16C1.03130.32180.47900.137*
O50.4807 (5)0.71679 (11)0.27610 (6)0.0787 (6)
H5A0.34140.73830.29400.118*
H5B0.52240.75690.25280.118*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
O10.0818 (13)0.0494 (10)0.0792 (12)−0.0028 (9)−0.0243 (10)0.0088 (8)
O20.0772 (13)0.0656 (11)0.0607 (10)0.0033 (10)−0.0179 (10)−0.0049 (8)
O30.1079 (16)0.0447 (10)0.0717 (12)−0.0132 (10)−0.0130 (10)−0.0080 (8)
O40.1079 (16)0.0432 (10)0.0804 (13)0.0016 (10)−0.0083 (11)0.0055 (8)
N10.0563 (13)0.0572 (12)0.0505 (11)−0.0060 (10)−0.0044 (10)−0.0047 (10)
N20.0592 (13)0.0466 (10)0.0524 (12)−0.0060 (10)−0.0057 (10)−0.0047 (9)
C10.0540 (15)0.0509 (14)0.0454 (13)−0.0051 (12)0.0009 (12)−0.0036 (11)
C20.0554 (16)0.0456 (13)0.0512 (13)−0.0011 (12)0.0017 (12)0.0048 (11)
C30.0545 (15)0.0468 (13)0.0568 (15)−0.0027 (12)−0.0045 (12)−0.0056 (11)
C40.0558 (15)0.0541 (14)0.0447 (13)0.0000 (12)−0.0014 (12)−0.0044 (11)
C50.0660 (17)0.0483 (13)0.0591 (15)0.0080 (13)−0.0030 (13)0.0046 (11)
C60.0646 (17)0.0449 (13)0.0616 (16)−0.0051 (12)0.0000 (14)−0.0026 (11)
C70.086 (2)0.0762 (19)0.0699 (18)−0.0058 (17)−0.0192 (15)−0.0202 (15)
C80.0521 (15)0.0521 (14)0.0556 (14)−0.0075 (12)0.0005 (12)−0.0052 (12)
C90.0694 (17)0.0417 (13)0.0470 (13)−0.0014 (12)0.0046 (12)−0.0046 (11)
C100.0573 (15)0.0429 (12)0.0445 (13)0.0017 (11)0.0012 (11)−0.0044 (10)
C110.0699 (18)0.0465 (14)0.0518 (14)0.0044 (13)0.0070 (13)−0.0021 (11)
C120.0727 (19)0.0635 (16)0.0515 (15)0.0114 (15)−0.0028 (13)0.0005 (13)
C130.078 (2)0.0724 (18)0.0620 (17)0.0062 (16)−0.0158 (15)−0.0129 (14)
C140.086 (2)0.0499 (14)0.0707 (18)−0.0079 (14)−0.0158 (16)−0.0095 (13)
C150.0698 (18)0.0456 (13)0.0601 (15)0.0024 (13)−0.0052 (13)−0.0020 (11)
C160.112 (3)0.092 (2)0.0700 (19)0.034 (2)−0.0149 (17)0.0079 (16)
O50.1172 (17)0.0435 (9)0.0748 (12)0.0068 (10)−0.0079 (11)0.0063 (8)

Geometric parameters (Å, °)

O1—C21.365 (3)C7—H7A0.9600
O1—H10.8208C7—H7B0.9600
O2—C41.369 (3)C7—H7C0.9600
O2—C71.418 (3)C8—H80.9300
O3—C91.252 (3)C9—C101.480 (3)
O4—C111.354 (3)C10—C151.398 (3)
O4—H40.8210C10—C111.400 (3)
N1—C81.287 (3)C11—C121.399 (3)
N1—N21.387 (2)C12—C131.365 (3)
N2—C91.339 (3)C12—C161.514 (3)
N2—H20.8961C13—C141.375 (3)
C1—C61.400 (3)C13—H130.9300
C1—C21.406 (3)C14—C151.361 (3)
C1—C81.443 (3)C14—H140.9300
C2—C31.373 (3)C15—H150.9300
C3—C41.377 (3)C16—H16A0.9600
C3—H30.9300C16—H16B0.9600
C4—C51.387 (3)C16—H16C0.9600
C5—C61.364 (3)O5—H5A0.8417
C5—H50.9300O5—H5B0.8395
C6—H60.9300
C2—O1—H1109.3N1—C8—C1121.7 (2)
C4—O2—C7117.94 (18)N1—C8—H8119.2
C11—O4—H4109.6C1—C8—H8119.2
C8—N1—N2115.52 (18)O3—C9—N2120.1 (2)
C9—N2—N1119.55 (19)O3—C9—C10121.2 (2)
C9—N2—H2124.6N2—C9—C10118.68 (19)
N1—N2—H2115.8C15—C10—C11117.8 (2)
C6—C1—C2116.7 (2)C15—C10—C9123.3 (2)
C6—C1—C8120.1 (2)C11—C10—C9118.9 (2)
C2—C1—C8123.2 (2)O4—C11—C12116.6 (2)
O1—C2—C3117.17 (19)O4—C11—C10121.9 (2)
O1—C2—C1121.21 (19)C12—C11—C10121.4 (2)
C3—C2—C1121.6 (2)C13—C12—C11117.9 (2)
C2—C3—C4119.7 (2)C13—C12—C16122.5 (2)
C2—C3—H3120.2C11—C12—C16119.6 (2)
C4—C3—H3120.2C12—C13—C14121.8 (2)
O2—C4—C3124.5 (2)C12—C13—H13119.1
O2—C4—C5115.0 (2)C14—C13—H13119.1
C3—C4—C5120.5 (2)C15—C14—C13120.4 (2)
C6—C5—C4119.4 (2)C15—C14—H14119.8
C6—C5—H5120.3C13—C14—H14119.8
C4—C5—H5120.3C14—C15—C10120.7 (2)
C5—C6—C1122.2 (2)C14—C15—H15119.7
C5—C6—H6118.9C10—C15—H15119.7
C1—C6—H6118.9C12—C16—H16A109.5
O2—C7—H7A109.5C12—C16—H16B109.5
O2—C7—H7B109.5H16A—C16—H16B109.5
H7A—C7—H7B109.5C12—C16—H16C109.5
O2—C7—H7C109.5H16A—C16—H16C109.5
H7A—C7—H7C109.5H16B—C16—H16C109.5
H7B—C7—H7C109.5H5A—O5—H5B111.4
C8—N1—N2—C9172.1 (2)N1—N2—C9—C10−179.92 (19)
C6—C1—C2—O1179.1 (2)O3—C9—C10—C15178.3 (2)
C8—C1—C2—O10.3 (4)N2—C9—C10—C15−1.8 (4)
C6—C1—C2—C3−0.4 (4)O3—C9—C10—C11−2.6 (4)
C8—C1—C2—C3−179.2 (2)N2—C9—C10—C11177.2 (2)
O1—C2—C3—C4−178.7 (2)C15—C10—C11—O4−178.4 (2)
C1—C2—C3—C40.8 (4)C9—C10—C11—O42.5 (4)
C7—O2—C4—C3−7.4 (4)C15—C10—C11—C120.3 (4)
C7—O2—C4—C5174.0 (2)C9—C10—C11—C12−178.9 (2)
C2—C3—C4—O2179.9 (2)O4—C11—C12—C13178.5 (3)
C2—C3—C4—C5−1.6 (4)C10—C11—C12—C13−0.2 (4)
O2—C4—C5—C6−179.3 (2)O4—C11—C12—C16−0.6 (4)
C3—C4—C5—C62.0 (4)C10—C11—C12—C16−179.3 (3)
C4—C5—C6—C1−1.7 (4)C11—C12—C13—C140.1 (4)
C2—C1—C6—C50.8 (4)C16—C12—C13—C14179.2 (3)
C8—C1—C6—C5179.7 (2)C12—C13—C14—C150.0 (5)
N2—N1—C8—C1179.8 (2)C13—C14—C15—C100.0 (4)
C6—C1—C8—N1178.5 (2)C11—C10—C15—C14−0.2 (4)
C2—C1—C8—N1−2.7 (4)C9—C10—C15—C14178.9 (2)
N1—N2—C9—O3−0.1 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
O4—H4···O30.821.802.528 (2)148
O1—H1···N10.821.932.650 (2)146
N2—H2···O50.902.012.899 (2)172
O5—H5B···O3i0.841.922.745 (2)167
O5—H5A···O1ii0.842.062.849 (3)156

Symmetry codes: (i) −x+1, y+1/2, −z+1/2; (ii) −x, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5423).

References

  • Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  • Bruker (2007). SMART, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Han, Y.-Y. & Zhao, Q.-R. (2010a). Acta Cryst. E66, o1025. [PMC free article] [PubMed]
  • Han, Y.-Y. & Zhao, Q.-R. (2010b). Acta Cryst. E66, o1026. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography