PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m617.
Published online 2010 May 8. doi:  10.1107/S1600536810015874
PMCID: PMC2979534

Bis(2-amino-6-methyl­pyrimidin-1-ium-4-olate-κ2 N 3,O)bis­(nitrato-κ2 O,O′)cadmium(II)

Abstract

In the title compound, [Cd(NO3)2(C5H7N3O)2], the CdII atom is eight-coordinated by two amine N atoms and two O atoms from two zwitterionic, biodentate 2-amino-6-methyl­pyrimidin-1-ium-4-olate ligands and by four O atoms from two nitrate groups. Intra­molecular N—H(...)O hydrogen bonds occur. The crystal packing is stabilized by inter­molecular N—H(...)O and C—H(...)O hydrogen bonds, two of which are bifurcated, between the nitrate anions and the organic groups.

Related literature

For common applications of this material, see: Aminabhavi et al. (1986 [triangle]); Ye et al. (2008 [triangle]). For the geometry around the Cd atom, see: Han et al. (2008 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m617-scheme1.jpg

Experimental

Crystal data

  • [Cd(NO3)2(C5H7N3O)2]
  • M r = 486.69
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m617-efi1.jpg
  • a = 7.7230 (12) Å
  • b = 9.5247 (16) Å
  • c = 13.113 (2) Å
  • α = 70.198 (9)°
  • β = 81.954 (8)°
  • γ = 69.840 (8)°
  • V = 851.7 (2) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 1.34 mm−1
  • T = 293 K
  • 0.46 × 0.26 × 0.12 mm

Data collection

  • Bruker APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003 [triangle]) T min = 0.455, T max = 0.851
  • 17615 measured reflections
  • 4031 independent reflections
  • 3603 reflections with I > 2σ(I)
  • R int = 0.072

Refinement

  • R[F 2 > 2σ(F 2)] = 0.035
  • wR(F 2) = 0.084
  • S = 1.21
  • 4031 reflections
  • 244 parameters
  • 40 restraints
  • H-atom parameters constrained
  • Δρmax = 0.90 e Å−3
  • Δρmin = −0.53 e Å−3

Data collection: APEX2 (Bruker, 2003 [triangle]); cell refinement: SAINT (Bruker, 2003 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015874/bg2342sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015874/bg2342Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work was supported by the Fundação para a Ciência e a Tecnologia (FCT), under scholarship SFRH/BD/38387/2008.

supplementary crystallographic information

Comment

Chemists and physicists of the solid state have shown an increasing interest in the study of the metal-organic coordination compounds in recent years owing to their interesting properties such as fluorescence and dielectric behaviour. (Aminabhavi et al., 1986; Ye et al., 2008).

Here we report the synthesis and crystal structure of the title compound Cd(NO3)2(C5H7N3O)2. In the atomic arrangement of this material, the distorted polyhedral Cd environment contains two nitrate anions and two organic moieties. Each one of them is coordinated in the bidental mode; the CdII is thus eight coordinated (Fig.1), with normal bond distances and angles around the cation (Han et al., 2008). The polyhedra are interconnected by a set of N—H···O and C—H···O hydrogen bonds generated by the organic entities (Table 1). Two of the H-bonds present, N6—H6B···(O2A, O4) and N6A—H6D···(O2, O3), are bifurcated. Fig. 2 shows the results of H-bonding, in the form of undulated columns running along the c axis, laterally interlinked to form a three dimensional infinite network

Experimental

A solution of Cd(NO3)2 (0.1 mmol) in ethanol was added dropwise to a solution of 2-Amino-4-hydroxy-6-methylpyrimidine 0.1 mmol in ethanol. After stirring for 30 min, the mixture was filtered. Crystals suitable for X-ray analysis were obtained by evaporating the filtrate at room temperature.

Refinement

All H atoms were located in a difference Fourier synthesis, placed in calculated positions and refined as riding on their parent atoms, using SHELXL97 (Sheldrick, 2008) defaults (N-H: 0.86Å, C-H: 0.93-0.97Å; Uiso(H) = 1.2Ueq(N,C)). The original structure validation reported that the U values of the coordinating oxygen atoms were too large in relation to the Cd centre, causing the Hirshfeld test to fail. This may be due to mild disorder of the nitrate anions. Restraints on the anisotropic temperature factors (DELU and SIMU instructions in SHELXL97, Sheldrick, 2008) were used to obtain more meaningful anisotropic displacement ellipsoids.

Figures

Fig. 1.
A view of (I), showing 50% probability displacement ellipsoids and arbitrary spheres for the H atoms.
Fig. 2.
The packing diagram of the compound viewed down the b axis. Hydrogen bonds are shown as dashed lines.

Crystal data

[Cd(NO3)2(C5H7N3O)2]Z = 2
Mr = 486.69F(000) = 484
Triclinic, P1Dx = 1.898 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7230 (12) ÅCell parameters from 5520 reflections
b = 9.5247 (16) Åθ = 2.4–28.1°
c = 13.113 (2) ŵ = 1.34 mm1
α = 70.198 (9)°T = 293 K
β = 81.954 (8)°Prism, pale yellow
γ = 69.840 (8)°0.46 × 0.26 × 0.12 mm
V = 851.7 (2) Å3

Data collection

Bruker APEXII CCD area-detector diffractometer4031 independent reflections
Radiation source: fine-focus sealed tube3603 reflections with I > 2σ(I)
graphiteRint = 0.072
[var phi] and ω scansθmax = 28.1°, θmin = 1.7°
Absorption correction: multi-scan (SADABS; Sheldrick, 2003)h = −10→10
Tmin = 0.455, Tmax = 0.851k = −12→12
17615 measured reflectionsl = −17→17

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.084H-atom parameters constrained
S = 1.21w = 1/[σ2(Fo2) + (0.0212P)2 + 0.4728P] where P = (Fo2 + 2Fc2)/3
4031 reflections(Δ/σ)max = 0.001
244 parametersΔρmax = 0.90 e Å3
40 restraintsΔρmin = −0.53 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cd10.22645 (3)0.32956 (3)0.258827 (17)0.04945 (10)
O20.4649 (4)0.0693 (3)0.24489 (17)0.0565 (6)
N10.3762 (4)0.2872 (3)0.1050 (2)0.0498 (7)
N50.5178 (5)0.3015 (4)−0.0651 (2)0.0639 (9)
H50.52360.3549−0.13240.077*
N60.2800 (6)0.5130 (4)−0.0387 (3)0.0745 (11)
H6A0.19920.55580.00330.089*
H6B0.28880.5650−0.10600.089*
C20.4911 (5)0.1373 (4)0.1459 (2)0.0507 (8)
C30.6252 (6)0.0693 (4)0.0768 (3)0.0601 (10)
H30.7046−0.03290.10390.072*
C40.6385 (6)0.1518 (5)−0.0279 (3)0.0623 (10)
C60.3913 (6)0.3665 (4)0.0005 (3)0.0556 (9)
C70.7740 (9)0.0931 (6)−0.1087 (3)0.0917 (17)
H7A0.8576−0.0085−0.07290.138*
H7B0.84200.1653−0.14250.138*
H7C0.70970.0849−0.16290.138*
O2A0.4636 (4)0.4609 (3)0.25671 (16)0.0533 (6)
N1A0.3893 (4)0.2887 (3)0.40365 (19)0.0438 (6)
N5A0.5494 (4)0.1982 (3)0.56308 (19)0.0488 (7)
H5A0.56550.13840.62930.059*
N6A0.3128 (5)0.1088 (4)0.5545 (2)0.0619 (8)
H6C0.22760.10780.51920.074*
H6D0.33040.05100.62110.074*
C2A0.4959 (5)0.3809 (3)0.3549 (2)0.0423 (7)
C3A0.6342 (5)0.3833 (4)0.4149 (2)0.0456 (7)
H3A0.70590.44870.38310.055*
C4A0.6597 (5)0.2896 (4)0.5181 (2)0.0453 (7)
C6A0.4159 (5)0.1988 (3)0.5068 (2)0.0443 (7)
C7A0.8029 (6)0.2786 (5)0.5881 (3)0.0638 (11)
H7D0.87350.34600.54740.096*
H7E0.88320.17190.61240.096*
H7F0.74430.31100.64970.096*
O3−0.1415 (5)0.0957 (4)0.3034 (3)0.0956 (10)
O4−0.0274 (4)0.2774 (3)0.2105 (2)0.0698 (7)
O50.0767 (4)0.1314 (3)0.3670 (2)0.0715 (7)
N7−0.0335 (4)0.1660 (3)0.2942 (3)0.0566 (7)
O6−0.2209 (6)0.7168 (5)0.2270 (4)0.1398 (18)
O70.0306 (6)0.6029 (4)0.1502 (3)0.0970 (10)
O8−0.0144 (4)0.5168 (3)0.3197 (3)0.0777 (8)
N8−0.0712 (7)0.6164 (4)0.2318 (4)0.0848 (12)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cd10.05007 (18)0.04931 (15)0.03951 (15)−0.02325 (12)−0.01013 (11)0.00889 (11)
O20.0728 (18)0.0538 (13)0.0279 (10)−0.0242 (12)−0.0036 (10)0.0106 (9)
N10.0603 (18)0.0503 (14)0.0319 (12)−0.0293 (13)−0.0118 (12)0.0116 (11)
N50.106 (3)0.0681 (19)0.0242 (12)−0.056 (2)−0.0100 (15)0.0095 (13)
N60.098 (3)0.0601 (18)0.0487 (17)−0.0347 (18)−0.0312 (18)0.0240 (14)
C20.064 (2)0.0525 (18)0.0323 (15)−0.0304 (16)−0.0103 (14)0.0062 (13)
C30.084 (3)0.0541 (19)0.0358 (16)−0.0302 (19)0.0002 (17)0.0016 (15)
C40.094 (3)0.067 (2)0.0363 (16)−0.049 (2)0.0020 (18)−0.0056 (16)
C60.077 (3)0.0561 (19)0.0347 (16)−0.0423 (18)−0.0224 (17)0.0137 (14)
C70.142 (5)0.100 (3)0.049 (2)−0.070 (4)0.027 (3)−0.023 (2)
O2A0.0667 (17)0.0557 (13)0.0286 (10)−0.0307 (12)−0.0075 (10)0.0115 (9)
N1A0.0449 (15)0.0420 (13)0.0320 (12)−0.0162 (11)−0.0046 (10)0.0076 (10)
N5A0.0604 (18)0.0455 (14)0.0263 (11)−0.0142 (13)−0.0079 (11)0.0063 (10)
N6A0.064 (2)0.0629 (18)0.0420 (15)−0.0308 (16)−0.0009 (14)0.0144 (13)
C2A0.0467 (18)0.0402 (15)0.0298 (13)−0.0139 (13)−0.0013 (12)0.0017 (12)
C3A0.0511 (19)0.0459 (16)0.0351 (14)−0.0196 (14)−0.0007 (13)−0.0026 (13)
C4A0.0505 (19)0.0409 (15)0.0373 (15)−0.0096 (14)−0.0049 (13)−0.0068 (13)
C6A0.0471 (18)0.0388 (15)0.0330 (14)−0.0123 (13)0.0014 (12)0.0036 (12)
C7A0.071 (3)0.064 (2)0.052 (2)−0.016 (2)−0.0212 (19)−0.0103 (18)
O30.086 (2)0.0819 (19)0.123 (3)−0.0598 (18)0.002 (2)−0.0050 (19)
O40.0662 (16)0.0681 (15)0.0648 (15)−0.0399 (12)−0.0210 (13)0.0183 (12)
O50.0709 (17)0.0653 (14)0.0620 (15)−0.0327 (12)−0.0126 (13)0.0160 (12)
N70.0485 (17)0.0447 (15)0.0663 (19)−0.0201 (13)−0.0011 (15)0.0005 (14)
O60.123 (3)0.078 (2)0.142 (3)0.020 (2)−0.014 (3)0.011 (2)
O70.108 (2)0.0589 (14)0.093 (2)−0.0209 (14)−0.0085 (19)0.0116 (14)
O80.0704 (18)0.0586 (15)0.0870 (19)−0.0134 (12)−0.0107 (14)−0.0056 (13)
N80.084 (3)0.0497 (19)0.106 (3)−0.026 (2)0.000 (3)−0.002 (2)

Geometric parameters (Å, °)

Cd1—N12.268 (3)C7—H7C0.9600
Cd1—N1A2.274 (2)O2A—C2A1.263 (3)
Cd1—O82.354 (3)N1A—C6A1.333 (3)
Cd1—O42.392 (3)N1A—C2A1.352 (4)
Cd1—O52.479 (3)N5A—C6A1.347 (4)
Cd1—O2A2.542 (3)N5A—C4A1.362 (4)
Cd1—O72.544 (3)N5A—H5A0.8600
Cd1—O22.576 (3)N6A—C6A1.315 (4)
O2—C21.263 (4)N6A—H6C0.8600
N1—C61.333 (4)N6A—H6D0.8600
N1—C21.362 (4)C2A—C3A1.423 (4)
N5—C61.336 (5)C3A—C4A1.343 (4)
N5—C41.371 (5)C3A—H3A0.9300
N5—H50.8600C4A—C7A1.488 (5)
N6—C61.327 (5)C7A—H7D0.9600
N6—H6A0.8600C7A—H7E0.9600
N6—H6B0.8600C7A—H7F0.9600
C2—C31.408 (5)O3—N71.208 (4)
C3—C41.341 (4)O4—N71.251 (4)
C3—H30.9300O5—N71.251 (4)
C4—C71.489 (6)O6—N81.213 (5)
C7—H7A0.9600O7—N81.252 (5)
C7—H7B0.9600O8—N81.239 (5)
N1—Cd1—N1A120.14 (10)N6—C6—N1119.3 (4)
N1—Cd1—O8141.62 (10)N6—C6—N5119.5 (3)
N1A—Cd1—O887.92 (10)N1—C6—N5121.1 (3)
N1—Cd1—O488.27 (10)C4—C7—H7A109.5
N1A—Cd1—O4142.19 (9)C4—C7—H7B109.5
O8—Cd1—O481.88 (11)H7A—C7—H7B109.5
N1—Cd1—O5115.01 (10)C4—C7—H7C109.5
N1A—Cd1—O591.51 (9)H7A—C7—H7C109.5
O8—Cd1—O587.40 (11)H7B—C7—H7C109.5
O4—Cd1—O551.91 (9)C2A—O2A—Cd189.6 (2)
N1—Cd1—O2A84.62 (9)C6A—N1A—C2A120.1 (3)
N1A—Cd1—O2A54.56 (8)C6A—N1A—Cd1140.1 (2)
O8—Cd1—O2A93.25 (10)C2A—N1A—Cd199.45 (17)
O4—Cd1—O2A161.62 (8)C6A—N5A—C4A121.8 (2)
O5—Cd1—O2A145.97 (8)C6A—N5A—H5A119.1
N1—Cd1—O790.67 (12)C4A—N5A—H5A119.1
N1A—Cd1—O7122.16 (11)C6A—N6A—H6C120.0
O8—Cd1—O751.02 (12)C6A—N6A—H6D120.0
O4—Cd1—O777.85 (11)H6C—N6A—H6D120.0
O5—Cd1—O7119.94 (12)O2A—C2A—N1A116.2 (3)
O2A—Cd1—O785.30 (11)O2A—C2A—C3A124.2 (3)
N1—Cd1—O254.13 (8)N1A—C2A—C3A119.6 (3)
N1A—Cd1—O285.12 (8)C4A—C3A—C2A119.0 (3)
O8—Cd1—O2163.01 (10)C4A—C3A—H3A120.5
O4—Cd1—O294.21 (10)C2A—C3A—H3A120.5
O5—Cd1—O277.32 (10)C3A—C4A—N5A119.0 (3)
O2A—Cd1—O295.29 (9)C3A—C4A—C7A123.9 (4)
O7—Cd1—O2144.40 (11)N5A—C4A—C7A117.0 (3)
C2—O2—Cd189.2 (2)N6A—C6A—N1A120.3 (3)
C6—N1—C2119.6 (3)N6A—C6A—N5A119.2 (3)
C6—N1—Cd1139.4 (3)N1A—C6A—N5A120.5 (3)
C2—N1—Cd1100.62 (19)C4A—C7A—H7D109.5
C6—N5—C4121.7 (3)C4A—C7A—H7E109.5
C6—N5—H5119.2H7D—C7A—H7E109.5
C4—N5—H5119.2C4A—C7A—H7F109.5
C6—N6—H6A120.0H7D—C7A—H7F109.5
C6—N6—H6B120.0H7E—C7A—H7F109.5
H6A—N6—H6B120.0N7—O4—Cd197.6 (2)
O2—C2—N1115.6 (3)N7—O5—Cd193.4 (2)
O2—C2—C3125.2 (3)O3—N7—O5122.1 (3)
N1—C2—C3119.2 (3)O3—N7—O4120.9 (3)
C4—C3—C2120.1 (4)O5—N7—O4117.0 (3)
C4—C3—H3120.0N8—O7—Cd190.7 (2)
C2—C3—H3120.0N8—O8—Cd1100.3 (3)
C3—C4—N5118.3 (4)O6—N8—O7123.2 (5)
C3—C4—C7125.1 (4)O6—N8—O8120.4 (5)
N5—C4—C7116.6 (3)O7—N8—O8116.4 (4)
N1—Cd1—O2—C24.3 (2)O2A—Cd1—N1A—C2A−2.61 (17)
N1A—Cd1—O2—C2−128.8 (2)O7—Cd1—N1A—C2A−58.1 (2)
O8—Cd1—O2—C2165.0 (3)O2—Cd1—N1A—C2A97.42 (19)
O4—Cd1—O2—C289.1 (2)Cd1—O2A—C2A—N1A−4.2 (3)
O5—Cd1—O2—C2138.5 (2)Cd1—O2A—C2A—C3A176.0 (3)
O2A—Cd1—O2—C2−75.1 (2)C6A—N1A—C2A—O2A179.1 (3)
O7—Cd1—O2—C214.2 (3)Cd1—N1A—C2A—O2A4.8 (3)
N1A—Cd1—N1—C6−119.0 (3)C6A—N1A—C2A—C3A−1.1 (5)
O8—Cd1—N1—C612.7 (4)Cd1—N1A—C2A—C3A−175.4 (2)
O4—Cd1—N1—C687.3 (4)O2A—C2A—C3A—C4A−178.1 (3)
O5—Cd1—N1—C6133.3 (3)N1A—C2A—C3A—C4A2.1 (5)
O2A—Cd1—N1—C6−75.7 (4)C2A—C3A—C4A—N5A−1.6 (5)
O7—Cd1—N1—C69.5 (4)C2A—C3A—C4A—C7A178.4 (3)
O2—Cd1—N1—C6−176.2 (4)C6A—N5A—C4A—C3A0.2 (5)
N1A—Cd1—N1—C253.2 (2)C6A—N5A—C4A—C7A−179.8 (3)
O8—Cd1—N1—C2−175.10 (19)C2A—N1A—C6A—N6A−179.9 (3)
O4—Cd1—N1—C2−100.5 (2)Cd1—N1A—C6A—N6A−8.7 (5)
O5—Cd1—N1—C2−54.6 (2)C2A—N1A—C6A—N5A−0.4 (5)
O2A—Cd1—N1—C296.4 (2)Cd1—N1A—C6A—N5A170.9 (2)
O7—Cd1—N1—C2−178.3 (2)C4A—N5A—C6A—N6A−179.6 (3)
O2—Cd1—N1—C2−4.06 (19)C4A—N5A—C6A—N1A0.9 (5)
Cd1—O2—C2—N1−6.4 (3)N1—Cd1—O4—N7122.3 (2)
Cd1—O2—C2—C3174.6 (4)N1A—Cd1—O4—N7−19.0 (3)
C6—N1—C2—O2−178.4 (3)O8—Cd1—O4—N7−94.9 (2)
Cd1—N1—C2—O27.5 (3)O5—Cd1—O4—N7−1.8 (2)
C6—N1—C2—C30.6 (5)O2A—Cd1—O4—N7−170.5 (2)
Cd1—N1—C2—C3−173.6 (3)O7—Cd1—O4—N7−146.6 (3)
O2—C2—C3—C4178.7 (4)O2—Cd1—O4—N768.5 (2)
N1—C2—C3—C4−0.1 (6)N1—Cd1—O5—N7−64.1 (2)
C2—C3—C4—N5−0.7 (6)N1A—Cd1—O5—N7171.4 (2)
C2—C3—C4—C7180.0 (4)O8—Cd1—O5—N783.5 (2)
C6—N5—C4—C31.1 (6)O4—Cd1—O5—N71.8 (2)
C6—N5—C4—C7−179.5 (4)O2A—Cd1—O5—N7175.47 (18)
C2—N1—C6—N6−179.4 (3)O7—Cd1—O5—N742.3 (3)
Cd1—N1—C6—N6−8.3 (6)O2—Cd1—O5—N7−104.0 (2)
C2—N1—C6—N5−0.2 (5)Cd1—O5—N7—O3176.9 (4)
Cd1—N1—C6—N5171.0 (3)Cd1—O5—N7—O4−3.0 (3)
C4—N5—C6—N6178.6 (3)Cd1—O4—N7—O3−176.8 (3)
C4—N5—C6—N1−0.7 (5)Cd1—O4—N7—O53.2 (4)
N1—Cd1—O2A—C2A−130.6 (2)N1—Cd1—O7—N8170.1 (3)
N1A—Cd1—O2A—C2A2.76 (18)N1A—Cd1—O7—N8−63.0 (3)
O8—Cd1—O2A—C2A87.9 (2)O8—Cd1—O7—N8−7.3 (3)
O4—Cd1—O2A—C2A161.7 (3)O4—Cd1—O7—N882.0 (3)
O5—Cd1—O2A—C2A−2.3 (3)O5—Cd1—O7—N850.5 (3)
O7—Cd1—O2A—C2A138.3 (2)O2A—Cd1—O7—N8−105.4 (3)
O2—Cd1—O2A—C2A−77.41 (19)O2—Cd1—O7—N8162.1 (2)
N1—Cd1—N1A—C6A−118.0 (3)N1—Cd1—O8—N83.3 (4)
O8—Cd1—N1A—C6A89.6 (3)N1A—Cd1—O8—N8143.1 (3)
O4—Cd1—N1A—C6A15.7 (4)O4—Cd1—O8—N8−73.4 (3)
O5—Cd1—N1A—C6A2.3 (3)O5—Cd1—O8—N8−125.3 (3)
O2A—Cd1—N1A—C6A−174.9 (4)O2A—Cd1—O8—N888.8 (3)
O7—Cd1—N1A—C6A129.6 (3)O7—Cd1—O8—N87.5 (3)
O2—Cd1—N1A—C6A−74.9 (3)O2—Cd1—O8—N8−151.1 (3)
N1—Cd1—N1A—C2A54.3 (2)Cd1—O7—N8—O6−165.2 (5)
O8—Cd1—N1A—C2A−98.1 (2)Cd1—O7—N8—O812.1 (4)
O4—Cd1—N1A—C2A−171.99 (18)Cd1—O8—N8—O6164.1 (4)
O5—Cd1—N1A—C2A174.6 (2)Cd1—O8—N8—O7−13.3 (5)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N5—H5···O2Ai0.861.972.779 (3)156
N6—H6A···O70.862.263.090 (6)163
N6—H6B···O4ii0.862.342.892 (4)122
N6—H6B···O2Ai0.862.563.230 (5)135
N5A—H5A···O2iii0.862.172.935 (3)149
N6A—H6C···O50.862.363.169 (4)157
N6A—H6D···O2iii0.862.252.996 (4)145
N6A—H6D···O3iv0.862.262.765 (4)117
C3—H3···O6v0.932.313.160 (5)152
C3A—H3A···O8vi0.932.423.301 (5)157

Symmetry codes: (i) −x+1, −y+1, −z; (ii) −x, −y+1, −z; (iii) −x+1, −y, −z+1; (iv) −x, −y, −z+1; (v) x+1, y−1, z; (vi) x+1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2342).

References

  • Aminabhavi, T. M., Biradar, N. S. & Patil, S. B. (1986). Inorg. Chim. Acta, 125, 125-128.
  • Bruker (2003). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Han, T.-T., Ma, J.-F., Zhang, L.-P. & Li, Q.-J. (2008). Acta Cryst. E64, m322. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2003). SADABS. University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Ye, Q., Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev.37, 84–100. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography