PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1265–o1266.
Published online 2010 May 8. doi:  10.1107/S1600536810015084
PMCID: PMC2979531

2-(3,4-Dimethyl-5,5-dioxo-2H,4H-pyrazolo[4,3-c][1,2]benzothia­zin-2-yl)-N′-(2-thienylmethyl­idene)acetohydrazide

Abstract

In the title mol­ecule, C18H17N5O3S2, the heterocyclic thia­zine ring adopts a twist boat conformation, with the S and N atoms displaced by 0.480 (7) and 0.205 (8) Å, respectively, on opposite sides of the mean plane formed by the remaining ring atoms. The pyrazole and benzene rings are tilted at an angle of 10.9 (2)° with respect to one another. The crystal structure is stabilized by inter­molecular N—H(...)O and C—H(...)N hydrogen bonds, resulting in dimers forming nine-membered rings of graph-set motif R 2 2(9). In addition, inter­molecular C—H(...)O inter­actions result in chains of mol­ecules along the c axis, further consolidating the crystal packing.

Related literature

For the use of 1,2-benzothia­zine derivatives as anti-inflammatory drugs, see: Lombardino et al. (1973 [triangle]); Zia-ur-Rehman et al. (2006 [triangle]). For the synthesis of benzothia­zine derivatives, see: Ahmad et al. (2010 [triangle]). For related structures, see: Ahmad et al. (2010 [triangle]). For graph-set notation, see: Bernstein et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1265-scheme1.jpg

Experimental

Crystal data

  • C18H17N5O3S2
  • M r = 415.49
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1265-efi1.jpg
  • a = 18.5474 (2) Å
  • b = 11.6670 (5) Å
  • c = 8.4783 (7) Å
  • V = 1834.64 (17) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.32 mm−1
  • T = 173 K
  • 0.28 × 0.06 × 0.04 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.915, T max = 0.987
  • 3078 measured reflections
  • 1725 independent reflections
  • 1623 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.087
  • S = 1.09
  • 1725 reflections
  • 255 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.21 e Å−3
  • Δρmin = −0.20 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015084/jh2146sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015084/jh2146Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HLS is grateful to the Higher Education Commission, Islamabad, and the University of the Punjab, Lahore, for financial support.

supplementary crystallographic information

Comment

Benzothiazines represent a class of heterocyclic compounds which exhibit a diverse range of biological activities like anti-inflammatory (Lombardino et al., 1973), antibacterial (Zia-ur-Rehman et al., 2006), etc. Continuing our research on the synthesis of potential biologically active derivatives of benzothiazines, we have fused a pyrazole ring with benzothiazine nucleus and the resulting compounds were found to be potent antioxidants (Ahmad et al., 2010). Herein we report the synthesis and crystal structure of the title compound.

In the title compound (Fig. 1), the bond distances and angles agree with the cortresponding bond distances and angles reported in a closely related compound (Ahmad et al., 2010). The heterocyclic thiazine ring adopts a twist boat conformation with atoms S1 and N1 displaced by 0.480 (7) and 0.205 (8) Å on the opposite sides from the mean planes formed by the remaining ring atoms. The pyrazol and phenyl rings are tilted at 10.9 (2)° with respect to each other. The atoms (S2/O3/N4/N5/C12—C18) of the thiophenylmethylideneacetohydrazide moiety are almost planar with meaximum deviation being 0.070 (3) Å for N4.

The structure is stabilized by intermolecular hydrogen bonds N4—H4N···O3 and C12—H12A···N5, resulting in dimers forming nine membered rings in R22(9) graph set motif (Bernstein et al., 1994). In addition, intermolecular interactions C12—H12B···O1 leading to chains of molecules along the c-axis further consolidate the crystal packing; the details of hydrogen bonding geometry have been provided in Tab. 1 and Fig. 2.

Experimental

A mixture of 2-(3,4-dimethyl-5,5-dioxidopyrazolo[4,3-c][1,2]benzothiazin -2(4H)-yl)acetohydrazide (10 mmoles), 2-formyl thiophene (12 mmoles), methanol (50 ml) and 2 drops of o-phosphoric acid were subjected to reflux for 3 hours. The precipitates formed were collected and washed with methanol. Crystals suitable for XRD were grown in dimethylformamide. mp. 556-557 K, MS m/z: 415.0(M+).

Refinement

The absolute structure parameter indicated the presence of racemic twinning. Therefore, a TWIN instruction with the default matrix R = (-1 0 0 , 0 -1 0, 0 0 -1) and a BASF with one parameter was used in the final round of least-squares refinement cycles. Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95, 0.98 and 0.99 Å for aryl, methy and methylene H-atoms, respectively. The Uiso(H) were allowed at 1.2Ueq(N/C). The final difference map was essentially featurless. 1343 Friedel pairs were merged.

Figures

Fig. 1.
The title molecule plotted with the displacement ellipsoids at 30% probability level (Farrugia, 1997).
Fig. 2.
A part of the unit cell showing intermolecular hydrogen bonds by dashed lines; the H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C18H17N5O3S2F(000) = 864
Mr = 415.49Dx = 1.504 Mg m3
Orthorhombic, Pca21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2acCell parameters from 2348 reflections
a = 18.5474 (2) Åθ = 1.0–27.5°
b = 11.6670 (5) ŵ = 0.32 mm1
c = 8.4783 (7) ÅT = 173 K
V = 1834.64 (17) Å3Needle, colorless
Z = 40.28 × 0.06 × 0.04 mm

Data collection

Nonius KappaCCD diffractometer1725 independent reflections
Radiation source: fine-focus sealed tube1623 reflections with I > 2σ(I)
graphiteRint = 0.028
ω and [var phi] scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −22→21
Tmin = 0.915, Tmax = 0.987k = −13→13
3078 measured reflectionsl = −10→10

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: difference Fourier map
wR(F2) = 0.087H-atom parameters constrained
S = 1.09w = 1/[σ2(Fo2) + (0.0336P)2 + 1.3682P] where P = (Fo2 + 2Fc2)/3
1725 reflections(Δ/σ)max = 0.001
255 parametersΔρmax = 0.21 e Å3
1 restraintΔρmin = −0.20 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S11.12931 (5)0.06283 (9)0.20843 (14)0.0366 (3)
S20.61859 (6)0.54119 (10)−0.03840 (15)0.0429 (3)
O11.11825 (16)0.1277 (3)0.0679 (4)0.0451 (8)
O21.18427 (15)−0.0233 (3)0.2123 (5)0.0547 (9)
O30.82031 (14)0.2742 (3)0.1289 (3)0.0375 (7)
N11.05269 (16)0.0005 (3)0.2551 (4)0.0344 (8)
N20.95284 (16)0.2366 (3)0.4250 (4)0.0277 (7)
N30.90015 (15)0.1669 (3)0.3686 (4)0.0270 (7)
N40.73543 (15)0.3288 (3)0.3100 (4)0.0312 (7)
H4N0.72090.32500.40870.037*
N50.69763 (15)0.3935 (3)0.2017 (4)0.0316 (7)
C11.1446 (2)0.1638 (3)0.3617 (5)0.0297 (9)
C21.2143 (2)0.1880 (4)0.4090 (5)0.0420 (11)
H21.25370.14510.36810.050*
C31.2262 (2)0.2749 (4)0.5164 (6)0.0469 (12)
H31.27380.29050.55140.056*
C41.1699 (3)0.3386 (4)0.5728 (6)0.0464 (11)
H41.17910.40120.64160.056*
C51.0993 (2)0.3125 (3)0.5303 (5)0.0338 (9)
H51.06030.35570.57240.041*
C61.08596 (19)0.2230 (3)0.4259 (5)0.0262 (8)
C71.01335 (19)0.1826 (3)0.3855 (5)0.0241 (8)
C80.99971 (19)0.0813 (3)0.3046 (5)0.0274 (8)
C90.92568 (19)0.0723 (3)0.2924 (5)0.0286 (8)
C101.0535 (2)−0.1124 (3)0.3329 (6)0.0417 (10)
H10A1.0039−0.13740.35260.050*
H10B1.0795−0.10670.43320.050*
H10C1.0777−0.16810.26450.050*
C110.8794 (2)−0.0162 (4)0.2176 (6)0.0392 (10)
H11A0.83620.02020.17370.047*
H11B0.8651−0.07300.29690.047*
H11C0.9062−0.05420.13290.047*
C120.8253 (2)0.1981 (3)0.3944 (5)0.0317 (9)
H12A0.82140.24050.49520.038*
H12B0.79610.12750.40360.038*
C130.79532 (19)0.2713 (3)0.2631 (5)0.0289 (8)
C140.6402 (2)0.4406 (3)0.2547 (5)0.0339 (9)
H140.62680.42950.36180.041*
C150.5956 (2)0.5102 (4)0.1539 (5)0.0363 (10)
C160.5327 (2)0.5660 (3)0.1956 (6)0.0383 (9)
H160.51120.55970.29680.046*
C170.5039 (3)0.6333 (4)0.0727 (6)0.0430 (11)
H170.46080.67710.08130.052*
C180.5445 (3)0.6279 (4)−0.0572 (6)0.0487 (12)
H180.53330.6683−0.15130.058*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0265 (4)0.0410 (5)0.0423 (6)0.0017 (4)0.0109 (5)−0.0047 (6)
S20.0460 (6)0.0429 (6)0.0398 (6)0.0039 (5)0.0011 (6)0.0019 (5)
O10.0430 (17)0.058 (2)0.0343 (16)−0.0118 (15)0.0114 (15)−0.0049 (16)
O20.0324 (14)0.0526 (18)0.079 (3)0.0093 (13)0.0159 (19)−0.014 (2)
O30.0276 (14)0.0575 (19)0.0273 (16)0.0057 (13)0.0015 (13)0.0031 (14)
N10.0298 (16)0.0280 (16)0.045 (2)0.0026 (13)0.0101 (16)−0.0056 (16)
N20.0242 (15)0.0309 (16)0.0280 (18)0.0007 (13)−0.0002 (14)−0.0015 (14)
N30.0185 (14)0.0359 (18)0.0265 (17)0.0010 (13)0.0034 (13)0.0011 (15)
N40.0256 (16)0.0452 (18)0.0229 (16)0.0053 (14)0.0010 (14)0.0038 (16)
N50.0274 (14)0.0374 (17)0.0299 (16)0.0013 (13)−0.0050 (16)0.0003 (17)
C10.0237 (18)0.032 (2)0.033 (2)−0.0018 (16)0.0024 (17)0.0068 (18)
C20.031 (2)0.051 (3)0.045 (3)0.0018 (19)0.004 (2)0.011 (2)
C30.032 (2)0.064 (3)0.045 (3)−0.010 (2)−0.010 (2)0.008 (3)
C40.051 (3)0.049 (3)0.039 (2)−0.012 (2)−0.011 (2)−0.002 (2)
C50.033 (2)0.034 (2)0.034 (2)−0.0001 (17)−0.0053 (19)−0.0015 (19)
C60.0256 (17)0.0259 (17)0.027 (2)−0.0033 (15)−0.0010 (16)0.0076 (16)
C70.0228 (17)0.0236 (17)0.0259 (19)0.0010 (14)0.0008 (15)−0.0002 (16)
C80.0234 (17)0.0306 (19)0.028 (2)0.0011 (14)0.0084 (17)0.0001 (17)
C90.0262 (18)0.033 (2)0.026 (2)−0.0047 (16)0.0031 (17)0.0005 (17)
C100.049 (2)0.029 (2)0.047 (3)−0.0031 (19)0.006 (2)−0.001 (2)
C110.035 (2)0.048 (2)0.034 (2)−0.0156 (18)0.001 (2)−0.008 (2)
C120.0240 (18)0.046 (2)0.0252 (19)0.0005 (17)0.0027 (16)0.0000 (19)
C130.0200 (17)0.038 (2)0.029 (2)−0.0025 (16)−0.0028 (17)−0.0026 (17)
C140.0309 (19)0.037 (2)0.034 (2)0.0050 (17)0.0031 (18)−0.0022 (18)
C150.031 (2)0.033 (2)0.045 (3)0.0012 (17)−0.0037 (19)−0.0070 (19)
C160.0341 (19)0.038 (2)0.043 (2)0.0047 (17)−0.003 (2)−0.005 (2)
C170.046 (2)0.037 (2)0.046 (3)0.0079 (19)−0.011 (2)−0.006 (2)
C180.062 (3)0.038 (2)0.046 (3)0.016 (2)−0.012 (3)0.003 (2)

Geometric parameters (Å, °)

S1—O11.426 (4)C4—H40.9500
S1—O21.432 (3)C5—C61.391 (5)
S1—N11.645 (3)C5—H50.9500
S1—C11.777 (4)C6—C71.467 (5)
S2—C181.714 (4)C7—C81.390 (5)
S2—C151.724 (5)C8—C91.381 (5)
O3—C131.229 (5)C9—C111.485 (5)
N1—C81.425 (5)C10—H10A0.9800
N1—C101.472 (5)C10—H10B0.9800
N2—C71.329 (5)C10—H10C0.9800
N2—N31.358 (4)C11—H11A0.9800
N3—C91.364 (5)C11—H11B0.9800
N3—C121.451 (5)C11—H11C0.9800
N4—C131.358 (5)C12—C131.509 (6)
N4—N51.380 (4)C12—H12A0.9900
N4—H4N0.8800C12—H12B0.9900
N5—C141.280 (5)C14—C151.441 (6)
C1—C21.384 (6)C14—H140.9500
C1—C61.398 (5)C15—C161.381 (5)
C2—C31.380 (6)C16—C171.410 (6)
C2—H20.9500C16—H160.9500
C3—C41.367 (6)C17—C181.336 (7)
C3—H30.9500C17—H170.9500
C4—C51.394 (6)C18—H180.9500
O1—S1—O2119.6 (2)C7—C8—N1125.6 (3)
O1—S1—N1108.15 (18)N3—C9—C8104.4 (3)
O2—S1—N1107.40 (18)N3—C9—C11124.3 (3)
O1—S1—C1106.36 (18)C8—C9—C11131.3 (4)
O2—S1—C1109.6 (2)N1—C10—H10A109.5
N1—S1—C1104.78 (18)N1—C10—H10B109.5
C18—S2—C1590.7 (2)H10A—C10—H10B109.5
C8—N1—C10117.9 (3)N1—C10—H10C109.5
C8—N1—S1111.9 (2)H10A—C10—H10C109.5
C10—N1—S1119.6 (3)H10B—C10—H10C109.5
C7—N2—N3103.6 (3)C9—C11—H11A109.5
N2—N3—C9113.7 (3)C9—C11—H11B109.5
N2—N3—C12119.0 (3)H11A—C11—H11B109.5
C9—N3—C12127.4 (3)C9—C11—H11C109.5
C13—N4—N5119.4 (3)H11A—C11—H11C109.5
C13—N4—H4N120.3H11B—C11—H11C109.5
N5—N4—H4N120.3N3—C12—C13112.5 (3)
C14—N5—N4115.1 (4)N3—C12—H12A109.1
C2—C1—C6120.9 (4)C13—C12—H12A109.1
C2—C1—S1119.7 (3)N3—C12—H12B109.1
C6—C1—S1119.2 (3)C13—C12—H12B109.1
C3—C2—C1119.3 (4)H12A—C12—H12B107.8
C3—C2—H2120.3O3—C13—N4124.5 (4)
C1—C2—H2120.3O3—C13—C12124.0 (4)
C4—C3—C2120.6 (4)N4—C13—C12111.4 (3)
C4—C3—H3119.7N5—C14—C15120.8 (4)
C2—C3—H3119.7N5—C14—H14119.6
C3—C4—C5120.5 (4)C15—C14—H14119.6
C3—C4—H4119.7C16—C15—C14126.8 (4)
C5—C4—H4119.7C16—C15—S2110.6 (3)
C6—C5—C4119.7 (4)C14—C15—S2122.5 (3)
C6—C5—H5120.1C15—C16—C17113.2 (4)
C4—C5—H5120.1C15—C16—H16123.4
C5—C6—C1118.7 (3)C17—C16—H16123.4
C5—C6—C7123.5 (3)C18—C17—C16111.6 (4)
C1—C6—C7117.7 (3)C18—C17—H17124.2
N2—C7—C8111.9 (3)C16—C17—H17124.2
N2—C7—C6124.4 (3)C17—C18—S2113.8 (4)
C8—C7—C6123.7 (3)C17—C18—H18123.1
C9—C8—C7106.4 (3)S2—C18—H18123.1
C9—C8—N1127.8 (3)
O1—S1—N1—C8−68.6 (3)N2—C7—C8—C90.3 (5)
O2—S1—N1—C8161.0 (3)C6—C7—C8—C9178.8 (3)
C1—S1—N1—C844.5 (3)N2—C7—C8—N1−175.7 (4)
O1—S1—N1—C10147.4 (3)C6—C7—C8—N12.7 (6)
O2—S1—N1—C1017.0 (4)C10—N1—C8—C9−63.6 (6)
C1—S1—N1—C10−99.4 (3)S1—N1—C8—C9151.8 (4)
C7—N2—N3—C9−1.2 (4)C10—N1—C8—C7111.6 (4)
C7—N2—N3—C12178.5 (3)S1—N1—C8—C7−33.0 (5)
C13—N4—N5—C14177.0 (3)N2—N3—C9—C81.4 (4)
O1—S1—C1—C2−98.9 (3)C12—N3—C9—C8−178.2 (3)
O2—S1—C1—C231.7 (4)N2—N3—C9—C11−178.9 (4)
N1—S1—C1—C2146.7 (3)C12—N3—C9—C111.4 (6)
O1—S1—C1—C677.1 (3)C7—C8—C9—N3−1.0 (4)
O2—S1—C1—C6−152.2 (3)N1—C8—C9—N3174.9 (4)
N1—S1—C1—C6−37.3 (3)C7—C8—C9—C11179.3 (4)
C6—C1—C2—C3−2.7 (6)N1—C8—C9—C11−4.7 (7)
S1—C1—C2—C3173.3 (3)N2—N3—C12—C1390.1 (4)
C1—C2—C3—C4−1.6 (6)C9—N3—C12—C13−90.3 (5)
C2—C3—C4—C53.9 (7)N5—N4—C13—O31.8 (6)
C3—C4—C5—C6−1.9 (7)N5—N4—C13—C12−175.2 (3)
C4—C5—C6—C1−2.3 (6)N3—C12—C13—O322.4 (6)
C4—C5—C6—C7174.3 (4)N3—C12—C13—N4−160.5 (3)
C2—C1—C6—C54.6 (6)N4—N5—C14—C15−179.9 (3)
S1—C1—C6—C5−171.5 (3)N5—C14—C15—C16−179.7 (4)
C2—C1—C6—C7−172.2 (4)N5—C14—C15—S2−3.7 (6)
S1—C1—C6—C711.8 (5)C18—S2—C15—C160.3 (3)
N3—N2—C7—C80.5 (4)C18—S2—C15—C14−176.3 (4)
N3—N2—C7—C6−177.9 (3)C14—C15—C16—C17176.3 (4)
C5—C6—C7—N210.2 (6)S2—C15—C16—C17−0.1 (5)
C1—C6—C7—N2−173.2 (4)C15—C16—C17—C18−0.2 (6)
C5—C6—C7—C8−168.0 (4)C16—C17—C18—S20.5 (6)
C1—C6—C7—C88.6 (5)C15—S2—C18—C17−0.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N4—H4N···O3i0.882.102.964 (4)166
C12—H12A···N5i0.992.523.488 (5)164
C11—H11B···O1ii0.982.403.243 (6)143

Symmetry codes: (i) −x+3/2, y, z+1/2; (ii) −x+2, −y, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2146).

References

  • Ahmad, M., Siddiqui, H. L., Zia-ur-Rehman, M. & Parvez, M. (2010). Eur. J. Med. Chem.45, 698–704. [PubMed]
  • Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Lombardino, J. G., Wiseman, E. H. & Chiaini, J. (1973). J. Med. Chem.16, 493–496. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zia-ur-Rehman, M., Choudary, J. A., Ahmad, S. & Siddiqui, H. L. (2006). Chem. Pharm. Bull.54, 1175–1178. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography