PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1404.
Published online 2010 May 22. doi:  10.1107/S1600536810018052
PMCID: PMC2979529

4-(3-Methoxy­phen­yl)-1-(2-oxoindolin-3-yl­idene)thio­semicarbazide

Abstract

In the title compound, C16H14N4O2S, intra­molecular N—H(...)N hydrogen bonding forms an S(5) ring, whereas N—H(...)O and C—H(...)S inter­actions complete S(6) ring motifs. In the crystal, mol­ecules form inversion dimers due to N—H(...)O inter­actions. The dimers are inter­linked through N—H(...)S hydrogen bonds and π–π inter­actions occur with a centroid–centroid distance of 3.8422 (11) Å between the meth­oxy-containing benzene ring and the five-membered heterocyclic ring.

Related literature

For the preparation and structures of biologically important N 4-aryl-substituted isatin-3-thio­semicarbazones, see: Pervez et al. (2007 [triangle], 2008 [triangle], 2009 [triangle], 2010a [triangle]). For a related structure, see: Pervez et al. (2010b [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1404-scheme1.jpg

Experimental

Crystal data

  • C16H14N4O2S
  • M r = 326.37
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1404-efi1.jpg
  • a = 15.1793 (5) Å
  • b = 7.2473 (2) Å
  • c = 15.4764 (5) Å
  • β = 111.179 (2)°
  • V = 1587.55 (9) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.22 mm−1
  • T = 296 K
  • 0.34 × 0.22 × 0.20 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.946, T max = 0.960
  • 13861 measured reflections
  • 3925 independent reflections
  • 2898 reflections with I > 2σ(I)
  • R int = 0.028

Refinement

  • R[F 2 > 2σ(F 2)] = 0.044
  • wR(F 2) = 0.125
  • S = 1.04
  • 3925 reflections
  • 209 parameters
  • H-atom parameters constrained
  • Δρmax = 0.36 e Å−3
  • Δρmin = −0.35 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018052/si2262sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018052/si2262Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HP, MSI and NS thank the Higher Education Commission (HEC), Pakistan, for financial assistance under the National Research Program for Universities (project No. 20–873/R&D/07/452).

supplementary crystallographic information

Comment

In continuation of our work on the synthesis of medicinally important organic molecules (Pervez et al., 2007, 2008, 2009, 2010a), we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide has been published (Pervez et al., 2010b). The title compound (I) differs from (II) due to the attachment of methoxy group at position-3 instead of fluoro at position-2 of the phenyl ring substituted at N^4^ of the thiosemicarbazone moiety.

In (I) the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 3-methoxyphenyl C (C10—C16/O2) are planar with r. m. s. deviations of 0.0178, 0.0244 and 0.0149 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.71 (5)°, 33.59 (3)° and 39.32 (3)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are dimerised (Fig. 2) due to intermolecular H-bonding of N—H···O type with R22(8) ring motifs. The dimers are interlinked through N—H···S type of H-bonding. There exist π···π interaction at a distance of 3.8422 (11) Å between the benzene ring (C10—C15) and the heterocyclic ring (N1/C7/C2/C1/C8).

Experimental

To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-(3-methoxyphenyl)thiosemicarbazide (0.99 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The yellow crystalline solid formed during refluxing was collected by suction filtration. Thorough washing with hot ethanol followed by ether afforded the target compound (I) in pure form (1.25 g, 77%), m. p. 477 K (d). The single crystals of (I) were grown in acetone by slow evaporation at room temperature.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. H-atoms are shown by small circles of arbitrary radii. The dotted lines indicate the intra-molecular H-bondings.
Fig. 2.
The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers which are interlinked.

Crystal data

C16H14N4O2SF(000) = 680
Mr = 326.37Dx = 1.366 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2898 reflections
a = 15.1793 (5) Åθ = 3.2–28.3°
b = 7.2473 (2) ŵ = 0.22 mm1
c = 15.4764 (5) ÅT = 296 K
β = 111.179 (2)°Prism, yellow
V = 1587.55 (9) Å30.34 × 0.22 × 0.20 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer3925 independent reflections
Radiation source: fine-focus sealed tube2898 reflections with I > 2σ(I)
graphiteRint = 0.028
Detector resolution: 7.40 pixels mm-1θmax = 28.3°, θmin = 3.2°
ω scansh = −20→20
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −9→9
Tmin = 0.946, Tmax = 0.960l = −20→19
13861 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.04w = 1/[σ2(Fo2) + (0.0539P)2 + 0.6227P] where P = (Fo2 + 2Fc2)/3
3925 reflections(Δ/σ)max < 0.001
209 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = −0.35 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.19826 (11)0.3610 (2)0.45348 (11)0.0329 (3)
C20.26044 (11)0.3126 (2)0.54720 (11)0.0345 (3)
C30.35347 (12)0.2547 (3)0.58412 (12)0.0434 (4)
H30.38820.23320.54640.052*
C40.39313 (14)0.2298 (3)0.67919 (13)0.0515 (5)
H40.45550.19080.70570.062*
C50.34181 (15)0.2617 (3)0.73516 (13)0.0529 (5)
H50.37050.24460.79880.063*
C60.24859 (14)0.3187 (3)0.69884 (12)0.0491 (5)
H60.21400.34030.73670.059*
C70.20928 (11)0.3419 (2)0.60448 (11)0.0382 (4)
C80.10524 (11)0.4125 (2)0.46058 (11)0.0359 (4)
C90.17432 (11)0.4498 (2)0.22293 (11)0.0360 (4)
C100.30202 (12)0.3962 (2)0.16100 (12)0.0388 (4)
C110.24941 (12)0.3445 (2)0.07119 (12)0.0407 (4)
H110.18650.31030.05520.049*
C120.29128 (13)0.3440 (3)0.00497 (13)0.0446 (4)
C130.38568 (14)0.3931 (3)0.02993 (15)0.0539 (5)
H130.41390.3948−0.01430.065*
C140.43705 (14)0.4392 (3)0.11998 (16)0.0554 (5)
H140.50060.46890.13660.066*
C150.39605 (13)0.4423 (3)0.18678 (14)0.0477 (4)
H150.43130.47480.24760.057*
C160.14733 (15)0.2526 (3)−0.11290 (15)0.0613 (6)
H16A0.11420.3578−0.10230.092*
H16B0.13870.1496−0.07770.092*
H16C0.12300.2222−0.17760.092*
N10.11680 (10)0.3984 (2)0.55058 (10)0.0429 (4)
H10.07330.42100.57250.051*
N20.22156 (9)0.36975 (19)0.38155 (9)0.0351 (3)
N30.15482 (9)0.4293 (2)0.30214 (9)0.0374 (3)
H3A0.09920.45480.30130.045*
N40.26118 (10)0.3955 (2)0.23067 (10)0.0416 (4)
H4A0.29660.35520.28420.050*
O10.03312 (8)0.45962 (19)0.39631 (8)0.0452 (3)
O20.24526 (10)0.2944 (2)−0.08484 (9)0.0610 (4)
S10.09025 (3)0.53985 (8)0.13109 (3)0.04856 (16)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0311 (7)0.0360 (8)0.0318 (8)0.0010 (6)0.0115 (6)−0.0041 (6)
C20.0357 (8)0.0370 (9)0.0304 (8)0.0024 (6)0.0115 (6)−0.0028 (6)
C30.0409 (9)0.0480 (10)0.0403 (9)0.0111 (7)0.0136 (7)−0.0015 (8)
C40.0456 (10)0.0572 (12)0.0423 (10)0.0146 (9)0.0045 (8)0.0006 (9)
C50.0585 (12)0.0603 (12)0.0312 (9)0.0100 (9)0.0060 (8)0.0039 (8)
C60.0547 (11)0.0628 (12)0.0320 (9)0.0061 (9)0.0182 (8)−0.0004 (8)
C70.0370 (8)0.0444 (9)0.0329 (8)0.0019 (7)0.0123 (7)−0.0013 (7)
C80.0306 (7)0.0442 (9)0.0335 (8)−0.0012 (6)0.0121 (6)−0.0050 (7)
C90.0361 (8)0.0396 (9)0.0331 (8)−0.0034 (7)0.0136 (7)−0.0010 (7)
C100.0408 (9)0.0398 (9)0.0411 (9)0.0054 (7)0.0211 (7)0.0075 (7)
C110.0412 (9)0.0431 (10)0.0421 (9)0.0028 (7)0.0200 (7)0.0032 (7)
C120.0518 (10)0.0442 (10)0.0445 (10)0.0062 (8)0.0253 (8)0.0032 (8)
C130.0548 (11)0.0636 (13)0.0570 (12)0.0033 (10)0.0367 (10)0.0059 (10)
C140.0414 (10)0.0658 (13)0.0656 (13)−0.0035 (9)0.0272 (10)0.0046 (10)
C150.0415 (9)0.0565 (12)0.0465 (10)0.0005 (8)0.0174 (8)0.0036 (9)
C160.0634 (13)0.0705 (15)0.0487 (12)−0.0020 (11)0.0187 (10)−0.0053 (10)
N10.0337 (7)0.0646 (10)0.0332 (7)0.0050 (7)0.0154 (6)−0.0018 (7)
N20.0345 (7)0.0396 (8)0.0317 (7)0.0018 (6)0.0124 (6)−0.0014 (6)
N30.0303 (6)0.0520 (9)0.0304 (7)0.0027 (6)0.0114 (5)0.0015 (6)
N40.0355 (7)0.0579 (10)0.0330 (7)0.0072 (6)0.0143 (6)0.0079 (6)
O10.0303 (6)0.0680 (9)0.0342 (6)0.0061 (5)0.0081 (5)−0.0031 (6)
O20.0614 (9)0.0838 (11)0.0445 (8)0.0019 (8)0.0272 (7)−0.0089 (7)
S10.0377 (2)0.0708 (4)0.0363 (2)0.0074 (2)0.01228 (18)0.0104 (2)

Geometric parameters (Å, °)

C1—N21.286 (2)C10—C111.381 (2)
C1—C21.459 (2)C10—N41.425 (2)
C1—C81.503 (2)C11—C121.387 (2)
C2—C31.383 (2)C11—H110.9300
C2—C71.390 (2)C12—O21.359 (2)
C3—C41.386 (3)C12—C131.389 (3)
C3—H30.9300C13—C141.370 (3)
C4—C51.378 (3)C13—H130.9300
C4—H40.9300C14—C151.386 (3)
C5—C61.384 (3)C14—H140.9300
C5—H50.9300C15—H150.9300
C6—C71.374 (2)C16—O21.422 (3)
C6—H60.9300C16—H16A0.9600
C7—N11.410 (2)C16—H16B0.9600
C8—O11.2319 (19)C16—H16C0.9600
C8—N11.343 (2)N1—H10.8600
C9—N41.339 (2)N2—N31.3504 (18)
C9—N31.369 (2)N3—H3A0.8600
C9—S11.6624 (17)N4—H4A0.8600
C10—C151.377 (2)
N2—C1—C2126.25 (14)C10—C11—H11120.3
N2—C1—C8127.64 (14)C12—C11—H11120.3
C2—C1—C8105.94 (13)O2—C12—C11123.55 (17)
C3—C2—C7120.33 (15)O2—C12—C13116.72 (17)
C3—C2—C1132.91 (15)C11—C12—C13119.72 (18)
C7—C2—C1106.72 (13)C14—C13—C12119.75 (18)
C2—C3—C4117.73 (17)C14—C13—H13120.1
C2—C3—H3121.1C12—C13—H13120.1
C4—C3—H3121.1C13—C14—C15121.26 (18)
C5—C4—C3121.22 (17)C13—C14—H14119.4
C5—C4—H4119.4C15—C14—H14119.4
C3—C4—H4119.4C10—C15—C14118.52 (18)
C4—C5—C6121.48 (17)C10—C15—H15120.7
C4—C5—H5119.3C14—C15—H15120.7
C6—C5—H5119.3O2—C16—H16A109.5
C7—C6—C5117.13 (17)O2—C16—H16B109.5
C7—C6—H6121.4H16A—C16—H16B109.5
C5—C6—H6121.4O2—C16—H16C109.5
C6—C7—C2122.09 (16)H16A—C16—H16C109.5
C6—C7—N1128.44 (16)H16B—C16—H16C109.5
C2—C7—N1109.47 (14)C8—N1—C7111.39 (14)
O1—C8—N1127.11 (15)C8—N1—H1124.3
O1—C8—C1126.47 (15)C7—N1—H1124.3
N1—C8—C1106.42 (13)C1—N2—N3116.95 (13)
N4—C9—N3114.35 (14)N2—N3—C9121.05 (13)
N4—C9—S1128.21 (13)N2—N3—H3A119.5
N3—C9—S1117.43 (12)C9—N3—H3A119.5
C15—C10—C11121.28 (16)C9—N4—C10127.93 (14)
C15—C10—N4118.06 (16)C9—N4—H4A116.0
C11—C10—N4120.61 (15)C10—N4—H4A116.0
C10—C11—C12119.44 (16)C12—O2—C16117.57 (15)
N2—C1—C2—C3−4.6 (3)C10—C11—C12—C130.8 (3)
C8—C1—C2—C3179.95 (19)O2—C12—C13—C14−178.02 (19)
N2—C1—C2—C7172.98 (16)C11—C12—C13—C140.9 (3)
C8—C1—C2—C7−2.51 (18)C12—C13—C14—C15−1.6 (3)
C7—C2—C3—C4−0.8 (3)C11—C10—C15—C141.2 (3)
C1—C2—C3—C4176.49 (19)N4—C10—C15—C14178.50 (17)
C2—C3—C4—C50.0 (3)C13—C14—C15—C100.6 (3)
C3—C4—C5—C60.4 (3)O1—C8—N1—C7−179.55 (17)
C4—C5—C6—C70.1 (3)C1—C8—N1—C70.0 (2)
C5—C6—C7—C2−0.9 (3)C6—C7—N1—C8177.47 (19)
C5—C6—C7—N1−179.92 (19)C2—C7—N1—C8−1.6 (2)
C3—C2—C7—C61.3 (3)C2—C1—N2—N3−175.68 (15)
C1—C2—C7—C6−176.60 (17)C8—C1—N2—N3−1.2 (2)
C3—C2—C7—N1−179.52 (16)C1—N2—N3—C9177.49 (15)
C1—C2—C7—N12.6 (2)N4—C9—N3—N23.9 (2)
N2—C1—C8—O15.7 (3)S1—C9—N3—N2−175.20 (12)
C2—C1—C8—O1−178.91 (17)N3—C9—N4—C10178.85 (16)
N2—C1—C8—N1−173.84 (17)S1—C9—N4—C10−2.1 (3)
C2—C1—C8—N11.57 (19)C15—C10—N4—C9142.08 (19)
C15—C10—C11—C12−1.8 (3)C11—C10—N4—C9−40.6 (3)
N4—C10—C11—C12−179.12 (16)C11—C12—O2—C164.2 (3)
C10—C11—C12—O2179.65 (17)C13—C12—O2—C16−176.89 (19)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O1i0.862.042.875 (2)164
N3—H3A···O10.862.062.7441 (19)136
N4—H4A···N20.862.192.620 (2)110
N4—H4A···S1ii0.862.873.5806 (16)141
C11—H11···S10.932.743.212 (2)112
C8—O1···Cg3iii1.2319 (19)3.6366 (1)3.7399 (17)85.16 (10)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1/2, y−1/2, −z+1/2; (iii) −x+1/2, y+1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2262).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Pervez, H., Chohan, Z. H., Ramzan, M., Nasim, F. H. & Khan, K. M. (2009). J. Enz. Inhib. Med. Chem.24, 437–446. [PubMed]
  • Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res.21, 1178–1186. [PubMed]
  • Pervez, H., Iqbal, M. S., Tahir, M. Y., Nasim, F. H., Choudhary, M. I. & Khan, K. M. (2008). J. Enz. Inhib. Med. Chem.23, 848–854. [PubMed]
  • Pervez, H., Manzoor, N., Yaqub, M., Khan, A., Khan, K. M., Nasim, F. H. & Choudhary, M. I. (2010a). Lett. Drug Des. Discov.7, 102–108.
  • Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography