PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1275–o1276.
Published online 2010 May 8. doi:  10.1107/S1600536810015941
PMCID: PMC2979528

6,6-[Ethyl­enebis(sulfanediyl)]-2-(2-methoxy­ethyl)-1,2,3,4,5,6-hexa­hydro-1,5-methano-1H-azocino[4,3-b]indol-3-one

Abstract

The title compound, C19H22N2O2S2, consists of a tetra­cyclic ring system containing an azocine skeleton with methoxy­ethyl and dithiol­ane groups as substituents. The benzene and five-membered N-heterocyclic rings are nearly coplanar, making a dihedral angle of 0.81 (12)°. The dithiol­ane ring adopts an envelope conformation. Inter­molecular N—H(...)O hydrogen-bonding and weak C—H(...)π inter­actions are present in the crystal structure.

Related literature

For general background to the hexa­hydro-1,5-methano-azocino[4,3-b]indole core structure, a synthetic precursor for most of the penta­cyclic and tetra­cyclic indole alkaloids of biological inter­est, see: Hesse (2002 [triangle]); Bosch & Bonjoch (1988 [triangle]); Saxton (1983 [triangle]). For related structures, see: Hökelek et al. (2004 [triangle], 2006 [triangle], 2007 [triangle]); Tercan et al. (2010 [triangle]); Uludağ et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1275-scheme1.jpg

Experimental

Crystal data

  • C19H22N2O2S2
  • M r = 374.53
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1275-efi1.jpg
  • a = 11.2233 (3) Å
  • b = 15.4228 (5) Å
  • c = 12.3027 (4) Å
  • β = 121.267 (2)°
  • V = 1820.23 (10) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 294 K
  • 0.11 × 0.11 × 0.09 mm

Data collection

  • Bruker Kappa APEXII CCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.85, T max = 0.97
  • 13979 measured reflections
  • 3203 independent reflections
  • 2765 reflections with I > 2σ(I)
  • R int = 0.029

Refinement

  • R[F 2 > 2σ(F 2)] = 0.057
  • wR(F 2) = 0.159
  • S = 1.04
  • 3203 reflections
  • 279 parameters
  • 1 restraint
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 1.10 e Å−3
  • Δρmin = −0.56 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON (Spek, 2009 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810015941/xu2755sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015941/xu2755Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

The hexahydro-1,5-methano-azocino[4,3-b]indole core structure can be considered to be synthetic precursor for most of the pentacyclic and tetracyclic indole alkaloids of biological interests (Hesse, 2002; Bosch & Bonjoch, 1988; Saxton, 1983), such as akuminicine and uleine. Most of them have the pentacyclic ring system as a common element and include a large group of naturally occuring compounds such as strychnine, a consulvant poison, and uleine alkaloids.

The structures of tricyclic, tetracyclic and pentacyclic ring systems with different substituents of azocino[4,3-b]indole core have been determined, previously. These include N-(2-benzyloxyethyl)-4,7-dimethyl-6-(1,3-dithiolan- 2yl)-1,2,3,4,5,6-hexahydro-1,5-methano-2-azocino[4,3-b]indole-2-one, (II) (Hökelek et al., 2004), 12-ethyl-2-methyl-6,6-ethylenedithio-1,2,3,4,5,6 -hexahydro-1,5-methano-2-azocino[4,3-b]indole-3-one, (III) (Uludağ et al., 2006), 4-ethyl-6,6-ethylenedithio-2-(2-methoxymethyl)-7-methoxymethylene-2, 3,4,5,6,7-hexahydro-1,5-methano-1H-azocino[4,3-b]indole-3-one, (IV) (Hökelek et al., 2006), 2-(2,2-dimethoxyethyl)-3-oxo-1,2,3,4,5,6 -hexahydro-1,5-methano-7H-azocino[4,3-b]indole, (V) (Hökelek et al., 2007) and 2-ethyl-6,6-ethylenedisulfanediyl-7-methoxymethyl-1,2,3,4,5,6-hexahydro -1,5-methanoazocino[4,3-b]indol-3-one, (VI) (Tercan et al., 2010). The present study was undertaken to ascertain the crystal structure of the title compound, (I).

The molecule of the title compound, (I), (Fig. 1) consists of a tetracyclic ring system containing an azocino skeleton with methoxyethyl and dithiolane groups as substituents at positions N2 and 6, respectively. The bonds N7—C6a [1.368 (4) Å] and N7—C7a [1.374 (4) Å] agree well with those in compounds (II) [1.392 (8) and 1.370 (8) Å], (IV) [1.393 (4) and 1.386 (5) Å], (V) [1.377 (3) and 1.376 (3) Å] and (VI) [1.398 (3) and 1.387 (3) Å]. The absolute configurations of C1 and C5 are S and S (Fig. 1). The S atoms of the dithiolane ring have electron-releasing properties, but the N atom at position 7 and the O atom attached to C3 have electron-withdrawing properties, leading to some changes in the bond lengths and angles of the carbazole skeleton.

An examination of the deviations from the least-squares planes through individual rings shows that rings A (C7a/C8/C9/C10/C11/C11a) and B (N7/C7a/C11a/C11b/C6a) are planar. They are also coplanar with a dihedral angle of A/B = 0.81 (12)°. Rings C (C1/C11b/C6a/C6/C5/C14), D (C1/N2/C3/C4/C5/C14) and E (C6/S1/S2/C12/C13) are, of course, not planar. Atom C14 deviates from the planes of F(C1/C5/C6/C6a/C11b) and G (C1/N2/C3/C4/C5) by 0.705 (4) Å and 0.737 (4) Å, respectively where the dihedral angle between planes of F and G is F/G = 69.64 (12)°. On the other hand, the dihedral angles between the plane of H (C1/C5/C14) and the planes of F and G are 54.18 (24)° and 56.47 (21)°, respectively. The conformation of ring E is an envelope, with atom C13 at the flap position, 0.583 (6) Å from the mean plane through the other four atoms.

In the crystal structure, intermolecular N—H···O hydrogen bonds (Table 1) link the molecules into chains nearly parallel to b-axis (Fig. 2), in which they may be effective in the stabilization of the structure. A weak C—H···π interaction also occurs (Table 1).

Experimental

The title compound, (I), was prepared from 2,3-dichloro-5,6-dicyano-p -benzoquinone (0.68 g, 3.00 mmol) and N-(methoxyethyl)-(2,3,4,9-tetra -hydrospiro-[1H-carbazole-1,2'-(1,3)dithiolane]-2-yl)-2-acetamide (1.00 g, 2.68 mmol) in THF (35 ml). The mixture was stirred at room temperature for 4 h under nitrogen atmosphere, and then poured into sodium hydroxide solution (100 ml, 10%). After extraction with dichloromethane (50 ml), the organic layer was dried with Na2SO4 and the solvent was evaporated. The residue was purified by silicagel chromatography using triethylamine, acetone and ethyl acetate (7:25:75) and crystallized from ethyl acetate/diethyl ether (2:1) (yield; 0.87 g, 88%), m.p. 445 K.

Figures

Fig. 1.
The molecular structure of the title molecule with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
Fig. 2.
A partial packing diagram of the title compound. Hydrogen bonds are shown as dashed lines. H atoms not involved in hydrogen bonding have been omitted for clarity.

Crystal data

C19H22N2O2S2F(000) = 792
Mr = 374.53Dx = 1.367 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6662 reflections
a = 11.2233 (3) Åθ = 2.5–25.0°
b = 15.4228 (5) ŵ = 0.31 mm1
c = 12.3027 (4) ÅT = 294 K
β = 121.267 (2)°Block, colourless
V = 1820.23 (10) Å30.11 × 0.11 × 0.09 mm
Z = 4

Data collection

Bruker Kappa APEXII CCD area-detector diffractometer3203 independent reflections
Radiation source: fine-focus sealed tube2765 reflections with I > 2σ(I)
graphiteRint = 0.029
[var phi] and ω scansθmax = 25.0°, θmin = 2.1°
Absorption correction: multi-scan (SADABS; Bruker, 2005)h = −13→13
Tmin = 0.85, Tmax = 0.97k = −15→18
13979 measured reflectionsl = −14→14

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.159H atoms treated by a mixture of independent and constrained refinement
S = 1.04w = 1/[σ2(Fo2) + (0.073P)2 + 2.6218P] where P = (Fo2 + 2Fc2)/3
3203 reflections(Δ/σ)max < 0.001
279 parametersΔρmax = 1.10 e Å3
1 restraintΔρmin = −0.56 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S1−0.00713 (10)0.85797 (6)0.42981 (9)0.0531 (3)
S2−0.17536 (8)0.82283 (6)0.54739 (8)0.0505 (3)
O1−0.0128 (3)0.51573 (16)0.7174 (3)0.0610 (7)
O20.4150 (5)0.4833 (2)0.7731 (4)0.1090 (14)
C10.2094 (3)0.6542 (2)0.6617 (3)0.0415 (7)
H10.304 (4)0.639 (2)0.679 (3)0.043 (9)*
N20.1631 (3)0.58379 (16)0.7142 (3)0.0431 (6)
C30.0280 (4)0.57123 (19)0.6714 (3)0.0443 (7)
C4−0.0805 (4)0.6256 (3)0.5630 (4)0.0564 (9)
H41−0.142 (4)0.587 (3)0.502 (4)0.068 (12)*
H42−0.141 (5)0.653 (3)0.592 (4)0.077 (13)*
C5−0.0340 (3)0.6908 (2)0.4983 (3)0.0430 (7)
H5−0.104 (3)0.691 (2)0.408 (3)0.044 (9)*
C6−0.0220 (3)0.7862 (2)0.5439 (3)0.0380 (7)
C6A0.1071 (3)0.79611 (18)0.6714 (3)0.0339 (6)
N70.1383 (3)0.86796 (17)0.7466 (2)0.0366 (6)
H70.087 (4)0.909 (2)0.735 (3)0.042 (9)*
C7A0.2701 (3)0.85823 (19)0.8510 (3)0.0356 (6)
C80.3469 (3)0.9135 (2)0.9544 (3)0.0447 (7)
H80.307 (4)0.965 (3)0.963 (4)0.065 (11)*
C90.4779 (4)0.8870 (3)1.0455 (3)0.0527 (9)
H90.531 (4)0.923 (2)1.112 (4)0.058 (11)*
C100.5337 (4)0.8091 (3)1.0358 (4)0.0577 (10)
H100.617 (5)0.798 (3)1.094 (4)0.070 (13)*
C110.4588 (3)0.7542 (2)0.9344 (4)0.0500 (8)
H110.493 (4)0.699 (3)0.925 (3)0.053 (10)*
C11A0.3232 (3)0.77788 (19)0.8398 (3)0.0371 (7)
C11B0.2155 (3)0.73953 (18)0.7235 (3)0.0362 (6)
C12−0.1673 (5)0.9159 (3)0.3688 (5)0.0906 (17)
H12A−0.14750.97410.40360.109*
H12B−0.21210.92050.27710.109*
C13−0.2624 (5)0.8740 (4)0.3995 (6)0.106 (2)
H13A−0.31780.83140.33440.127*
H13B−0.32560.91710.39910.127*
C140.1063 (4)0.6613 (2)0.5194 (3)0.0470 (8)
H1410.096 (3)0.608 (2)0.482 (3)0.046 (9)*
H1420.145 (4)0.704 (2)0.483 (3)0.056 (10)*
C150.2666 (4)0.5408 (2)0.8317 (4)0.0575 (9)
H1510.216 (6)0.523 (4)0.884 (5)0.114 (18)*
H1520.346 (5)0.582 (3)0.883 (4)0.076 (13)*
C160.3309 (5)0.4618 (3)0.8156 (5)0.0704 (11)
H16A0.38400.43190.89640.084*
H16B0.25860.42300.75560.084*
C170.4859 (8)0.4086 (4)0.7611 (8)0.126 (2)
H17A0.54440.42690.72980.189*
H17B0.41820.36790.70270.189*
H17C0.54190.38170.84270.189*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0634 (6)0.0513 (5)0.0516 (5)0.0028 (4)0.0346 (5)0.0135 (4)
S20.0386 (4)0.0590 (6)0.0533 (5)0.0041 (4)0.0234 (4)0.0035 (4)
O10.0779 (17)0.0414 (13)0.0728 (17)−0.0145 (12)0.0456 (15)0.0025 (12)
O20.152 (3)0.066 (2)0.175 (4)0.025 (2)0.131 (3)0.019 (2)
C10.0471 (18)0.0336 (16)0.0529 (19)0.0004 (13)0.0324 (16)−0.0034 (13)
N20.0523 (16)0.0296 (13)0.0498 (15)0.0011 (11)0.0281 (13)0.0007 (11)
C30.059 (2)0.0292 (15)0.0503 (18)−0.0081 (14)0.0327 (16)−0.0075 (13)
C40.049 (2)0.047 (2)0.067 (2)−0.0100 (17)0.0265 (19)0.0050 (18)
C50.0479 (18)0.0403 (17)0.0371 (17)−0.0057 (14)0.0196 (15)−0.0025 (13)
C60.0407 (16)0.0380 (16)0.0379 (16)−0.0017 (13)0.0222 (14)0.0014 (13)
C6A0.0361 (14)0.0338 (15)0.0364 (15)−0.0018 (12)0.0220 (13)−0.0006 (12)
N70.0375 (13)0.0321 (13)0.0402 (14)0.0028 (11)0.0200 (12)−0.0024 (11)
C7A0.0358 (15)0.0349 (15)0.0410 (16)−0.0031 (12)0.0234 (13)−0.0005 (12)
C80.0470 (18)0.0393 (17)0.0503 (19)−0.0047 (14)0.0270 (16)−0.0069 (14)
C90.0441 (18)0.060 (2)0.0455 (19)−0.0104 (17)0.0168 (16)−0.0123 (17)
C100.0369 (18)0.065 (2)0.054 (2)0.0004 (17)0.0109 (17)−0.0014 (18)
C110.0393 (17)0.0452 (19)0.061 (2)0.0052 (15)0.0234 (16)0.0017 (16)
C11A0.0349 (14)0.0364 (15)0.0432 (16)−0.0015 (12)0.0225 (13)−0.0001 (13)
C11B0.0383 (15)0.0312 (14)0.0436 (16)−0.0016 (12)0.0245 (13)−0.0015 (12)
C120.056 (2)0.091 (3)0.100 (4)0.008 (2)0.023 (2)0.050 (3)
C130.076 (3)0.148 (5)0.099 (4)0.050 (3)0.049 (3)0.062 (4)
C140.065 (2)0.0384 (18)0.0494 (19)−0.0033 (16)0.0383 (18)−0.0078 (15)
C150.063 (2)0.0424 (19)0.054 (2)0.0027 (17)0.0210 (19)0.0035 (16)
C160.071 (3)0.053 (2)0.085 (3)0.007 (2)0.039 (2)0.007 (2)
C170.165 (6)0.097 (4)0.188 (7)0.030 (4)0.141 (6)0.002 (4)

Geometric parameters (Å, °)

S1—C61.862 (3)C9—C101.388 (5)
S1—C121.787 (5)C9—H90.91 (4)
S2—C61.833 (3)C10—C111.374 (5)
S2—C131.744 (5)C10—H100.85 (4)
O1—C31.238 (4)C11—C11A1.401 (4)
O2—C161.337 (5)C11—H110.96 (4)
O2—C171.450 (6)C11A—C11B1.437 (4)
C1—H10.99 (3)C11B—C6A1.358 (4)
N2—C11.487 (4)C11B—C11.503 (4)
N2—C31.337 (4)C12—C131.456 (7)
N2—C151.462 (5)C12—H12A0.9700
C4—C31.510 (5)C12—H12B0.9700
C4—H410.92 (4)C13—H13A0.9700
C4—H421.01 (5)C13—H13B0.9700
C5—C41.531 (5)C14—C11.521 (5)
C5—C141.525 (5)C14—H1410.92 (4)
C5—H50.97 (3)C14—H1421.01 (4)
C6—C51.556 (4)C15—C161.480 (6)
C6A—C61.492 (4)C15—H1521.00 (5)
N7—C6A1.368 (4)C15—H1511.09 (6)
N7—C7A1.374 (4)C16—H16A0.9700
N7—H70.81 (4)C16—H16B0.9700
C7A—C81.397 (4)C17—H17A0.9600
C7A—C11A1.412 (4)C17—H17B0.9600
C8—C91.369 (5)C17—H17C0.9600
C8—H80.95 (4)
C12—S1—C698.61 (18)C9—C10—H10117 (3)
C13—S2—C698.0 (2)C11—C10—C9121.4 (3)
C16—O2—C17112.3 (4)C11—C10—H10121 (3)
N2—C1—C11B110.8 (2)C10—C11—C11A118.8 (3)
N2—C1—C14108.9 (3)C10—C11—H11124 (2)
N2—C1—H1108.1 (19)C11A—C11—H11117 (2)
C11B—C1—C14109.1 (3)C7A—C11A—C11B106.2 (2)
C11B—C1—H1109.3 (19)C11—C11A—C7A118.6 (3)
C14—C1—H1110.7 (19)C11—C11A—C11B135.2 (3)
C3—N2—C15118.7 (3)C6A—C11B—C1122.0 (3)
C3—N2—C1121.0 (3)C6A—C11B—C11A106.9 (3)
C15—N2—C1118.9 (3)C11A—C11B—C1131.2 (3)
O1—C3—N2122.3 (3)S1—C12—H12A109.1
O1—C3—C4117.9 (3)S1—C12—H12B109.1
N2—C3—C4119.8 (3)C13—C12—S1112.5 (3)
C3—C4—C5119.2 (3)C13—C12—H12A109.1
C3—C4—H41106 (3)C13—C12—H12B109.1
C3—C4—H42107 (3)H12A—C12—H12B107.8
C5—C4—H41108 (3)C12—C13—S2112.5 (4)
C5—C4—H42113 (3)C12—C13—H13A109.1
H41—C4—H42101 (4)C12—C13—H13B109.1
C4—C5—C6114.9 (3)S2—C13—H13A109.1
C4—C5—H5108 (2)S2—C13—H13B109.1
C6—C5—H5106 (2)H13A—C13—H13B107.8
C14—C5—C4108.4 (3)C1—C14—C5108.6 (3)
C14—C5—C6109.4 (3)C1—C14—H141109 (2)
C14—C5—H5110.6 (19)C1—C14—H142108 (2)
C5—C6—S1108.4 (2)C5—C14—H141110 (2)
C5—C6—S2113.2 (2)C5—C14—H142112 (2)
C6A—C6—C5109.3 (3)H141—C14—H142109 (3)
C6A—C6—S1108.3 (2)N2—C15—C16115.7 (3)
C6A—C6—S2110.8 (2)N2—C15—H151108 (3)
S2—C6—S1106.67 (16)N2—C15—H152109 (2)
N7—C6A—C6124.2 (3)C16—C15—H151108 (3)
C11B—C6A—N7110.5 (3)C16—C15—H152105 (2)
C11B—C6A—C6125.0 (3)H152—C15—H151111 (4)
C6A—N7—C7A108.5 (3)O2—C16—C15109.9 (4)
C6A—N7—H7127 (2)O2—C16—H16A109.7
C7A—N7—H7124 (2)O2—C16—H16B109.7
N7—C7A—C8129.8 (3)C15—C16—H16A109.7
N7—C7A—C11A108.0 (3)C15—C16—H16B109.7
C8—C7A—C11A122.1 (3)H16A—C16—H16B108.2
C7A—C8—H8121 (2)O2—C17—H17A109.5
C9—C8—C7A117.1 (3)O2—C17—H17B109.5
C9—C8—H8122 (2)O2—C17—H17C109.5
C8—C9—C10121.9 (3)H17A—C17—H17B109.5
C8—C9—H9118 (2)H17A—C17—H17C109.5
C10—C9—H9120 (2)H17B—C17—H17C109.5
C12—S1—C6—S2−7.3 (3)C11B—C6A—C6—S1−101.0 (3)
C12—S1—C6—C5114.9 (3)C11B—C6A—C6—S2142.3 (3)
C12—S1—C6—C6A−126.6 (3)C11B—C6A—C6—C516.8 (4)
C6—S1—C12—C13−15.1 (5)C7A—N7—C6A—C6−174.4 (3)
C13—S2—C6—C6A140.4 (3)C7A—N7—C6A—C11B−0.3 (3)
C13—S2—C6—C5−96.3 (3)C6A—N7—C7A—C8−179.4 (3)
C13—S2—C6—S122.8 (3)C6A—N7—C7A—C11A0.4 (3)
C6—S2—C13—C12−35.3 (5)N7—C7A—C8—C9−179.6 (3)
C17—O2—C16—C15177.4 (5)C11A—C7A—C8—C90.6 (5)
C3—N2—C1—C11B82.0 (4)N7—C7A—C11A—C11178.5 (3)
C3—N2—C1—C14−38.0 (4)N7—C7A—C11A—C11B−0.4 (3)
C15—N2—C1—C11B−84.5 (3)C8—C7A—C11A—C11−1.7 (4)
C15—N2—C1—C14155.6 (3)C8—C7A—C11A—C11B179.4 (3)
C1—N2—C3—O1−176.6 (3)C7A—C8—C9—C100.7 (5)
C1—N2—C3—C43.6 (5)C8—C9—C10—C11−0.8 (6)
C15—N2—C3—O1−10.1 (5)C9—C10—C11—C11A−0.4 (6)
C15—N2—C3—C4170.1 (3)C10—C11—C11A—C7A1.6 (5)
C1—N2—C15—C16−92.1 (4)C10—C11—C11A—C11B−179.9 (3)
C3—N2—C15—C16101.1 (4)C7A—C11A—C11B—C1−178.8 (3)
C5—C4—C3—O1−176.1 (3)C7A—C11A—C11B—C6A0.3 (3)
C5—C4—C3—N23.7 (5)C11—C11A—C11B—C12.5 (6)
C6—C5—C4—C3−98.9 (4)C11—C11A—C11B—C6A−178.4 (4)
C14—C5—C4—C323.9 (5)C6A—C11B—C1—N2−94.1 (3)
C4—C5—C14—C1−57.4 (4)C6A—C11B—C1—C1425.7 (4)
C6—C5—C14—C168.7 (3)C11A—C11B—C1—N284.9 (4)
S1—C6—C5—C4−166.5 (2)C11A—C11B—C1—C14−155.3 (3)
S1—C6—C5—C1471.2 (3)C1—C11B—C6A—N7179.2 (3)
S2—C6—C5—C4−48.4 (3)C11A—C11B—C6A—N70.0 (3)
S2—C6—C5—C14−170.6 (2)C1—C11B—C6A—C6−6.7 (4)
C6A—C6—C5—C475.7 (3)C11A—C11B—C6A—C6174.1 (3)
C6A—C6—C5—C14−46.6 (3)S1—C12—C13—S234.0 (7)
N7—C6A—C6—S172.2 (3)C5—C14—C1—N265.4 (3)
N7—C6A—C6—S2−44.4 (3)C5—C14—C1—C11B−55.6 (3)
N7—C6A—C6—C5−169.9 (3)N2—C15—C16—O270.2 (5)

Hydrogen-bond geometry (Å, °)

Cg1 is the centroid of the C7a/C8/C9/C10/C11/C11a ring.
D—H···AD—HH···AD···AD—H···A
N7—H7···O1i0.82 (4)2.06 (4)2.832 (4)157 (3)
C17—H17A···Cg1ii0.962.893.545 (9)127

Symmetry codes: (i) −x, y+1/2, −z+3/2; (ii) −x+1, y−1/2, −z+3/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU2755).

References

  • Bosch, J. & Bonjoch, J. (1988). Studies in Natural Product Chemistry, edited by A. Rahman. Amsterdam: Elsevier.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Hesse, M. (2002). Alkaloids, edited by P. M. Wallimann & M. V. Kisakürek. Zürich/New York: Verlag Helvetica Chimica Acta and Wiley.
  • Hökelek, T., Şahin, E., Uludağ, N. & Erdoğan, Ü. I. (2007). Acta Cryst. E63, o3268.
  • Hökelek, T., Uludağ, N. & Patır, S. (2004). Acta Cryst. E60, o25–o27.
  • Hökelek, T., Uludağ, N. & Patır, S. (2006). Acta Cryst. E62, o791–o793.
  • Saxton, J. E. (1983). Editor. Heterocyclic Compounds, Vol. 25, The Monoterpenoid Indole Alkaloids, ch. 8 and 11. New York: Wiley.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]
  • Tercan, B., Şahin, E., Patır, S. & Hökelek, T. (2010). Acta Cryst. E66, o328. [PMC free article] [PubMed]
  • Uludağ, N., Hökelek, T. & Patır, S. (2006). J. Heterocycl. Chem.43, 585–591.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography