PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1423.
Published online 2010 May 22. doi:  10.1107/S1600536810017769
PMCID: PMC2979525

8-(4-Chloro­benzyl­idene)-4-(4-chloro­phen­yl)-2-phenyl-5,6,7,8-tetra­hydro­quinoline

Abstract

In the crystal structure of the title compound, C28H21Cl2N, π–π inter­actions link pairs of mol­ecules into centrosymmetric dimers with a distance of 3.756 (3) Å between the centroids of the pyridine rings. Weak inter­molecular C—H(...)Cl hydrogen bonds further link these dimers into chains propagating along [An external file that holds a picture, illustration, etc.
Object name is e-66-o1423-efi1.jpg01]. The pyridine ring forms dihedral angles of 21.52 (1) and 55.87 (2)°, respectively, with the phenyl ring and the 4-chlorophenyl ring.

Related literature

For applications of pyridyl-containing compounds, see: Yan et al. (2007 [triangle]); Barton & Ollis (1979 [triangle]); Katritzky & Marson (1984 [triangle]); Constable et al. (1994 [triangle]); Eryazici et al. (2006 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1423-scheme1.jpg

Experimental

Crystal data

  • C28H21Cl2N
  • M r = 442.36
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1423-efi2.jpg
  • a = 10.0583 (10) Å
  • b = 10.6483 (10) Å
  • c = 10.8792 (10) Å
  • α = 82.028 (2)°
  • β = 89.345 (1)°
  • γ = 71.335 (2)°
  • V = 1092.53 (18) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.31 mm−1
  • T = 295 K
  • 0.23 × 0.20 × 0.19 mm

Data collection

  • Enraf–Nonius CAD-4 diffractometer
  • 5765 measured reflections
  • 3810 independent reflections
  • 3211 reflections with I > 2σ(I)
  • R int = 0.014
  • 3 standard reflections every 100 reflections intensity decay: none

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.102
  • S = 1.06
  • 3810 reflections
  • 280 parameters
  • H-atom parameters constrained
  • Δρmax = 0.20 e Å−3
  • Δρmin = −0.30 e Å−3

Data collection: CAD-4 Software (Enraf–Nonius, 1989 [triangle]); cell refinement: CAD-4 Software data reduction: NRCVAX (Gabe et al., 1989 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017769/cv2704sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017769/cv2704Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Natural Science Foundation of Shandong Province (grant Nos. Y2006B08 & Z2007B01).

supplementary crystallographic information

Comment

The pyridyl heterocyclic core occurs in many natural products (Barton & Ollis, 1979; Katritzky & Marson, 1984). It also plays an important role in various coordinating ligands (Constable et al., 1994; Eryazici et al., 2006)˙ Recently, the structure of 5,6,7,8-tetrahydroquinoline derivative has been reported (Yan et al., 2007). Herein, we report the crystal structure of the title compound.

In (I) (Fig. 1), the bond lengths and angles are in a good agreement with those reported previously (Yan et al., 2007). Rings N1/C13/C12/C22/C21/C14 (p1), C15-C20 (p2), C23-C28 (p3) and C1-C6 (p4) form the following dihedral angles - p1/p2 21.52 (1)°, p1/p3 55.87 (2)°, p1/p4 33.74 (1)°, p2/p3 67.85 (1)°, p2/p4 44.53 (2)° and p3/p4 81.57 (1)°.

The crystal packing is stabilized by hydrogen bonds and π-π interactions. π-π interaction link two molecules into centrosymmetric dimer with the distance of 3.756 (3) Å between the centroids of pyridine rings. Weak intermolecular C—H···Cl hydrogen bonds (Table 1) link further these dimers into chains propagated in direction [-101].

Experimental

The title compound was synthesized by reaction of (Z)-2,6-dibenzylidenecyclohexanone (0.343 g, 1 mmol),ammonium acetate (3.0 g, 0.039 mol) and N-phenacylpyridinium bromide (0.280 g, 1.2 mmol) in refluxing methanol (15 ml) under stirring for 7 h. Single crystals suitable for x-ray measurements were obtained by recrystallization from ethanol at room temperature.

Refinement

C-bound H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93-0.97 Å and Uiso(H)=1.2-1.5Ueq(C).

Figures

Fig. 1.
The structure of the title compound showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Crystal data

C28H21Cl2NZ = 2
Mr = 442.36F(000) = 460
Triclinic, P1Dx = 1.345 Mg m3
Hall symbol: -P 1Melting point: 446 K
a = 10.0583 (10) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.6483 (10) ÅCell parameters from 25 reflections
c = 10.8792 (10) Åθ = 4–14°
α = 82.028 (2)°µ = 0.31 mm1
β = 89.345 (1)°T = 295 K
γ = 71.335 (2)°Block, colorless
V = 1092.53 (18) Å30.23 × 0.20 × 0.19 mm

Data collection

Enraf–Nonius CAD-4 diffractometerRint = 0.014
Radiation source: fine-focus sealed tubeθmax = 25.0°, θmin = 1.9°
graphiteh = −10→11
ω scansk = −10→12
5765 measured reflectionsl = −12→12
3810 independent reflections3 standard reflections every 100 reflections
3211 reflections with I > 2σ(I) intensity decay: none

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.049P)2 + 0.2862P] where P = (Fo2 + 2Fc2)/3
3810 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.20 e Å3
0 restraintsΔρmin = −0.30 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Cl10.76136 (6)−0.12681 (6)−0.49616 (5)0.06911 (19)
Cl2−0.44155 (6)0.60618 (5)0.38242 (6)0.0742 (2)
N10.17509 (14)−0.06763 (13)0.09541 (12)0.0368 (3)
C10.45331 (19)−0.14359 (18)−0.27005 (16)0.0451 (4)
H1B0.3983−0.1989−0.25220.054*
C20.5506 (2)−0.17024 (19)−0.36113 (17)0.0489 (4)
H2A0.5600−0.2415−0.40490.059*
C30.63328 (18)−0.09032 (19)−0.38617 (16)0.0458 (4)
C40.61789 (19)0.0167 (2)−0.32375 (17)0.0499 (5)
H4A0.67400.0710−0.34200.060*
C50.51923 (19)0.04352 (18)−0.23411 (16)0.0451 (4)
H5A0.50890.1167−0.19280.054*
C60.43443 (17)−0.03640 (16)−0.20368 (15)0.0374 (4)
C70.33130 (17)−0.02208 (16)−0.10601 (15)0.0379 (4)
H7A0.2986−0.0948−0.08810.045*
C80.27524 (16)0.07649 (16)−0.03750 (15)0.0350 (4)
C90.30828 (19)0.20661 (17)−0.04971 (16)0.0416 (4)
H9A0.28200.2535−0.13330.050*
H9B0.40880.1863−0.03800.050*
C100.23390 (19)0.29860 (17)0.04218 (17)0.0441 (4)
H10A0.28000.26520.12350.053*
H10B0.24050.38730.01660.053*
C110.08054 (18)0.30767 (16)0.05054 (16)0.0424 (4)
H11A0.03440.36940.10730.051*
H11B0.03360.3405−0.03050.051*
C120.07233 (17)0.17042 (16)0.09631 (14)0.0355 (4)
C130.17015 (16)0.05872 (16)0.05496 (14)0.0345 (4)
C140.08518 (17)−0.08920 (16)0.18078 (15)0.0369 (4)
C150.09818 (18)−0.23138 (16)0.22446 (15)0.0386 (4)
C160.2229 (2)−0.33247 (17)0.21094 (17)0.0473 (4)
H16A0.2978−0.31080.17350.057*
C170.2370 (2)−0.46471 (19)0.25232 (19)0.0578 (5)
H17A0.3211−0.53130.24260.069*
C180.1272 (3)−0.4986 (2)0.30786 (19)0.0610 (6)
H18A0.1370−0.58770.33610.073*
C190.0030 (2)−0.3998 (2)0.32122 (18)0.0578 (5)
H19A−0.0716−0.42230.35850.069*
C20−0.0120 (2)−0.26712 (18)0.27962 (16)0.0469 (4)
H20A−0.0968−0.20110.28870.056*
C21−0.01285 (18)0.01573 (17)0.22810 (15)0.0399 (4)
H21A−0.0728−0.00210.28870.048*
C22−0.02151 (17)0.14700 (16)0.18517 (15)0.0369 (4)
C23−0.12942 (17)0.25829 (16)0.23450 (15)0.0380 (4)
C24−0.13747 (19)0.26296 (18)0.36124 (16)0.0460 (4)
H24A−0.07630.19440.41580.055*
C25−0.2349 (2)0.3679 (2)0.40779 (18)0.0513 (5)
H25A−0.23890.37060.49290.062*
C26−0.32574 (19)0.46814 (18)0.32692 (18)0.0467 (4)
C27−0.32402 (19)0.46397 (18)0.20151 (17)0.0472 (4)
H27A−0.38840.53070.14780.057*
C28−0.22516 (19)0.35909 (18)0.15609 (16)0.0444 (4)
H28A−0.22300.35630.07100.053*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Cl10.0586 (3)0.0873 (4)0.0505 (3)−0.0087 (3)0.0250 (2)−0.0108 (3)
Cl20.0743 (4)0.0533 (3)0.0875 (4)−0.0030 (3)0.0244 (3)−0.0288 (3)
N10.0408 (8)0.0361 (7)0.0351 (7)−0.0139 (6)0.0084 (6)−0.0076 (6)
C10.0467 (10)0.0434 (10)0.0459 (10)−0.0140 (8)0.0093 (8)−0.0106 (8)
C20.0527 (11)0.0490 (11)0.0418 (10)−0.0086 (9)0.0090 (8)−0.0146 (8)
C30.0396 (9)0.0550 (11)0.0329 (9)−0.0034 (8)0.0076 (7)−0.0024 (8)
C40.0466 (10)0.0575 (11)0.0476 (10)−0.0201 (9)0.0113 (8)−0.0067 (9)
C50.0487 (10)0.0481 (10)0.0433 (10)−0.0199 (8)0.0123 (8)−0.0129 (8)
C60.0365 (9)0.0383 (9)0.0341 (8)−0.0079 (7)0.0044 (7)−0.0047 (7)
C70.0384 (9)0.0370 (9)0.0394 (9)−0.0139 (7)0.0063 (7)−0.0058 (7)
C80.0359 (8)0.0346 (8)0.0340 (8)−0.0112 (7)0.0044 (7)−0.0043 (7)
C90.0459 (10)0.0403 (9)0.0420 (9)−0.0179 (8)0.0111 (8)−0.0083 (7)
C100.0540 (11)0.0386 (9)0.0459 (10)−0.0221 (8)0.0124 (8)−0.0107 (8)
C110.0495 (10)0.0340 (9)0.0435 (10)−0.0126 (8)0.0118 (8)−0.0075 (7)
C120.0390 (9)0.0358 (8)0.0335 (8)−0.0138 (7)0.0046 (7)−0.0068 (7)
C130.0375 (8)0.0347 (8)0.0324 (8)−0.0128 (7)0.0042 (7)−0.0061 (7)
C140.0412 (9)0.0366 (9)0.0341 (8)−0.0140 (7)0.0048 (7)−0.0060 (7)
C150.0501 (10)0.0369 (9)0.0318 (8)−0.0172 (8)0.0051 (7)−0.0079 (7)
C160.0546 (11)0.0410 (10)0.0474 (10)−0.0159 (9)0.0080 (8)−0.0092 (8)
C170.0697 (13)0.0384 (10)0.0611 (12)−0.0105 (10)0.0032 (10)−0.0101 (9)
C180.0920 (16)0.0391 (10)0.0557 (12)−0.0284 (11)−0.0012 (11)−0.0016 (9)
C190.0783 (14)0.0561 (12)0.0498 (11)−0.0386 (11)0.0104 (10)−0.0032 (9)
C200.0570 (11)0.0467 (10)0.0413 (10)−0.0223 (9)0.0104 (8)−0.0075 (8)
C210.0427 (9)0.0415 (9)0.0376 (9)−0.0163 (8)0.0123 (7)−0.0071 (7)
C220.0380 (9)0.0380 (9)0.0351 (9)−0.0116 (7)0.0053 (7)−0.0081 (7)
C230.0385 (9)0.0375 (9)0.0413 (9)−0.0156 (7)0.0098 (7)−0.0089 (7)
C240.0453 (10)0.0474 (10)0.0414 (10)−0.0088 (8)0.0056 (8)−0.0087 (8)
C250.0536 (11)0.0579 (12)0.0438 (10)−0.0153 (9)0.0106 (9)−0.0192 (9)
C260.0459 (10)0.0398 (10)0.0579 (11)−0.0161 (8)0.0174 (9)−0.0149 (8)
C270.0452 (10)0.0391 (10)0.0522 (11)−0.0094 (8)0.0067 (8)0.0004 (8)
C280.0490 (10)0.0446 (10)0.0387 (9)−0.0144 (8)0.0093 (8)−0.0049 (8)

Geometric parameters (Å, °)

Cl1—C31.7366 (17)C12—C221.397 (2)
Cl2—C261.7367 (17)C12—C131.405 (2)
N1—C141.337 (2)C14—C211.389 (2)
N1—C131.342 (2)C14—C151.487 (2)
C1—C21.378 (2)C15—C201.387 (2)
C1—C61.395 (2)C15—C161.389 (2)
C1—H1B0.9300C16—C171.380 (3)
C2—C31.368 (3)C16—H16A0.9300
C2—H2A0.9300C17—C181.376 (3)
C3—C41.373 (3)C17—H17A0.9300
C4—C51.375 (2)C18—C191.373 (3)
C4—H4A0.9300C18—H18A0.9300
C5—C61.393 (2)C19—C201.383 (3)
C5—H5A0.9300C19—H19A0.9300
C6—C71.465 (2)C20—H20A0.9300
C7—C81.343 (2)C21—C221.386 (2)
C7—H7A0.9300C21—H21A0.9300
C8—C131.489 (2)C22—C231.487 (2)
C8—C91.513 (2)C23—C281.382 (2)
C9—C101.518 (2)C23—C241.387 (2)
C9—H9A0.9700C24—C251.382 (2)
C9—H9B0.9700C24—H24A0.9300
C10—C111.517 (2)C25—C261.372 (3)
C10—H10A0.9700C25—H25A0.9300
C10—H10B0.9700C26—C271.371 (3)
C11—C121.505 (2)C27—C281.382 (2)
C11—H11A0.9700C27—H27A0.9300
C11—H11B0.9700C28—H28A0.9300
C14—N1—C13118.91 (14)N1—C13—C8116.56 (13)
C2—C1—C6122.23 (17)C12—C13—C8120.52 (14)
C2—C1—H1B118.9N1—C14—C21121.64 (15)
C6—C1—H1B118.9N1—C14—C15116.46 (14)
C3—C2—C1119.02 (17)C21—C14—C15121.88 (14)
C3—C2—H2A120.5C20—C15—C16118.21 (16)
C1—C2—H2A120.5C20—C15—C14121.62 (16)
C2—C3—C4120.79 (16)C16—C15—C14120.16 (15)
C2—C3—Cl1119.54 (14)C17—C16—C15120.80 (18)
C4—C3—Cl1119.66 (15)C17—C16—H16A119.6
C3—C4—C5119.74 (18)C15—C16—H16A119.6
C3—C4—H4A120.1C18—C17—C16120.35 (19)
C5—C4—H4A120.1C18—C17—H17A119.8
C4—C5—C6121.59 (17)C16—C17—H17A119.8
C4—C5—H5A119.2C19—C18—C17119.53 (18)
C6—C5—H5A119.2C19—C18—H18A120.2
C5—C6—C1116.61 (15)C17—C18—H18A120.2
C5—C6—C7126.52 (15)C18—C19—C20120.41 (19)
C1—C6—C7116.83 (15)C18—C19—H19A119.8
C8—C7—C6131.97 (16)C20—C19—H19A119.8
C8—C7—H7A114.0C19—C20—C15120.70 (19)
C6—C7—H7A114.0C19—C20—H20A119.7
C7—C8—C13117.97 (14)C15—C20—H20A119.7
C7—C8—C9124.69 (14)C22—C21—C14120.16 (15)
C13—C8—C9117.31 (13)C22—C21—H21A119.9
C8—C9—C10113.80 (13)C14—C21—H21A119.9
C8—C9—H9A108.8C21—C22—C12118.56 (15)
C10—C9—H9A108.8C21—C22—C23119.49 (14)
C8—C9—H9B108.8C12—C22—C23121.95 (14)
C10—C9—H9B108.8C28—C23—C24118.10 (16)
H9A—C9—H9B107.7C28—C23—C22121.24 (15)
C11—C10—C9111.40 (14)C24—C23—C22120.66 (16)
C11—C10—H10A109.3C25—C24—C23121.08 (17)
C9—C10—H10A109.3C25—C24—H24A119.5
C11—C10—H10B109.3C23—C24—H24A119.5
C9—C10—H10B109.3C26—C25—C24119.17 (17)
H10A—C10—H10B108.0C26—C25—H25A120.4
C12—C11—C10108.64 (14)C24—C25—H25A120.4
C12—C11—H11A110.0C27—C26—C25121.19 (17)
C10—C11—H11A110.0C27—C26—Cl2118.83 (15)
C12—C11—H11B110.0C25—C26—Cl2119.95 (15)
C10—C11—H11B110.0C26—C27—C28119.02 (17)
H11A—C11—H11B108.3C26—C27—H27A120.5
C22—C12—C13117.77 (14)C28—C27—H27A120.5
C22—C12—C11123.25 (14)C23—C28—C27121.37 (16)
C13—C12—C11118.81 (14)C23—C28—H28A119.3
N1—C13—C12122.92 (14)C27—C28—H28A119.3

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C7—H7A···N10.932.342.760 (2)107
C20—H20A···Cl1i0.932.803.476 (2)130

Symmetry codes: (i) x−1, y, z+1.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV2704).

References

  • Barton, D. & Ollis, D. (1979). Comprehensive Organic Chemistry, Vol. 4, pp. 468–469. Oxford, New York: Pergamon Press.
  • Constable, E. C., Martínez-Máňez, R., Chargill Thompson, A. M. W. & Walker, J. V. (1994). J. Chem. Soc. pp. 1585–1594.
  • Enraf–Nonius (1989). CAD-4 Software Enraf–Nonius, Delft, The Netherlands.
  • Eryazici, I., Moorefield, C. N., Durmus, S. & Newkome, G. R. (2006). J. Org. Chem.71, 1009–1014. [PubMed]
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. & White, P. S. (1989). J. Appl. Cryst.22, 384–387.
  • Katritzky, A. R. & Marson, C. M. (1984). Angew. Chem. Int. Ed. Engl.23, 420–429.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Yan, C. G., Cai, X. M., Wang, Q. F., Wang, T. Y. & Zheng, M. (2007). Nat. Prop. Liais. Coord. Paris, 5, 945–947.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography