PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): m713.
Published online 2010 May 29. doi:  10.1107/S160053681001915X
PMCID: PMC2979522

Poly[[μ4-bis­(4-pyridyl­carbon­yl)piperazine-κ4 N:N′:O:O′]bis­(thio­cyanato-κN)cobalt(II)]

Abstract

In the title compound, [Co(NCS)2(C16H16N4O2)]n, the octa­hedrally coordinated CoII ion lies on a crystallographic inversion center, with trans isothio­cyanate ligands. Pyridyl N-donor atoms and formyl O-donor atoms from exotetra­dentate bis­(4-pyridyl­carbon­yl)piperazine (4-bpfp) ligands link the Co(NCS)2 units into a [Co(NCS)2(4-bpfp)]n coordination polymer layer that is oriented parallel to (101). The layers stack along [010] to construct the pseudo-three-dimensional structure.

Related literature

For divalent metal isophthalate coordination polymers containing bis­(4-pyridylmeth­yl)piperazine ligands, see: Martin et al. (2007 [triangle]). For a cobalt isothio­cyanate coordination polymer containing bis­(4-pyridylmeth­yl)piperazine ligands, see: Martin et al. (2009 [triangle]). For the preparation of 4-bpfp, see: Hou et al. (2003 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-0m713-scheme1.jpg

Experimental

Crystal data

  • [Co(NCS)2(C16H16N4O2)]
  • M r = 471.44
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-0m713-efi1.jpg
  • a = 7.7410 (14) Å
  • b = 7.8943 (15) Å
  • c = 9.801 (3) Å
  • α = 101.080 (2)°
  • β = 102.264 (2)°
  • γ = 119.136 (2)°
  • V = 479.58 (18) Å3
  • Z = 1
  • Mo Kα radiation
  • μ = 1.14 mm−1
  • T = 173 K
  • 0.42 × 0.19 × 0.07 mm

Data collection

  • Bruker APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.643, T max = 0.928
  • 6955 measured reflections
  • 1753 independent reflections
  • 1646 reflections with I > 2σ(I)
  • R int = 0.052

Refinement

  • R[F 2 > 2σ(F 2)] = 0.037
  • wR(F 2) = 0.105
  • S = 1.18
  • 1753 reflections
  • 133 parameters
  • H-atom parameters constrained
  • Δρmax = 0.37 e Å−3
  • Δρmin = −0.55 e Å−3

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: CrystalMaker (Palmer, 2007 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Selected bond lengths (Å)

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S160053681001915X/hy2308sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S160053681001915X/hy2308Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We gratefully acknowledge the donors of the American Chemical Society Petroleum Research Fund for funding this work. ZMW thanks Dr Richard Staples for instruction in the use of the crystallographic software.

supplementary crystallographic information

Comment

Recently our group has been investigating the synthesis of divalent metal coordination polymers containing aromatic dicarboxylate and bis(4-pyridyl-methyl)piperazine ligands (Martin et al., 2007). To probe the structural effect of the presence of hydrogen-bond accepting formyl oxygen atoms in a similar ligand, we attempted to prepare a cobalt phthalate coordination polymer containing bis(4-pyridylcarbonyl)piperazine (4-bpfp). Use of cobalt(II) thiocyanate as the metal precursor afforded pink plates of the title compound.

The title compound crystallizes in the centrosymmetric triclinic space group with an asymmetric unit consisting of a CoII ion on a crystallographic inversion center, one isothiocyanate ligand bound via its N atom, and one-half of a 4-bpfp molecule. The coordination environment at Co is a slightly distorted [CoN4O2] octahedron (Fig. 1), with trans isothiocyanate ligands, trans pyridyl N atom donors from two 4-bpfp ligands, and trans formyl O atom donors from two other 4-bpfp ligands.

Each 4-bpfp ligand is exotetradentate, ligating to Co atoms through both pyridyl N atoms and both formyl O atoms. As a result, [Co(NCS)2(4-bpfp)]n coordination polymer layers are formed (Fig. 2), which are oriented parallel to the ac crystal planes. Fourteen-membered [CoOC4N]2 circuits, whose centroids rest on crystallographic inversion centers, are evident within the layer motifs. The Co···Co distances across these circuits denote the a lattice parameter. The through-ligand Co···Co distances across the full span of the 4-bpfp ligands measure 16.471 (4) Å.

Adjacent [Co(NCS)2(4-bpfp)]n layers stack in an AAA pattern along the b direction (Fig. 3), with the isothiocyanate ligands projecting above and below the layer planes. Crystal packing forces cause aggregation of the layer motifs into pseudo three-dimensional crystal structure of the title compound.

Experimental

All starting materials were obtained commercially, except for 4-bpfp, which was prepared by a published procedure (Hou et al., 2003). Cobalt(II) thiocyanate (130 mg, 0.74 mmol), phthalic acid (123 mg, 0.74 mmol) and 4-bpfp (110 mg, 0.37 mmol) were placed into 10 ml H2O in a 23 ml Teflon-lined Parr acid digestion bomb. The bomb was heated at 393 K for 48 h and was then allowed to cool to room temperature. Pink plates of the title compound were obtained along with a white powdery solid.

Refinement

All H atoms bound to C atoms were placed in calculated positions, with C—H = 0.93 (CH) and 0.97 (CH2) Å, and refined in a riding mode with Uiso(H) = 1.2Ueq(C).

Figures

Fig. 1.
The coordination environment of the title compound, showing 50% probability ellipsoids. Hydrogen atom positions are shown as grey sticks. [Color codes: dark blue Co, yellow S, red O, light blue N, black C. Symmetry codes: (i) -x+1, -y+1, -z; (ii) -x, ...
Fig. 2.
[Co(NCS)2(4-bpfp)]n layer in the title compound.
Fig. 3.
Packing diagram of the title compound.

Crystal data

[Co(NCS)2(C16H16N4O2)]Z = 1
Mr = 471.44F(000) = 241
Triclinic, P1Dx = 1.632 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7410 (14) ÅCell parameters from 6955 reflections
b = 7.8943 (15) Åθ = 2.3–25.3°
c = 9.801 (3) ŵ = 1.14 mm1
α = 101.080 (2)°T = 173 K
β = 102.264 (2)°Plate, pink
γ = 119.136 (2)°0.42 × 0.19 × 0.07 mm
V = 479.58 (18) Å3

Data collection

Bruker APEXII CCD diffractometer1753 independent reflections
Radiation source: fine-focus sealed tube1646 reflections with I > 2σ(I)
graphiteRint = 0.052
ω and [var phi] scansθmax = 25.3°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −9→9
Tmin = 0.643, Tmax = 0.928k = −9→9
6955 measured reflectionsl = −11→11

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105H-atom parameters constrained
S = 1.18w = 1/[σ2(Fo2) + (0.0458P)2 + 0.1032P] where P = (Fo2 + 2Fc2)/3
1753 reflections(Δ/σ)max < 0.001
133 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = −0.55 e Å3

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Co10.50000.50000.00000.03453 (19)
S10.75373 (12)1.06782 (11)0.44195 (8)0.0504 (2)
N10.2531 (3)0.5500 (3)−0.0887 (2)0.0359 (4)
N2−0.3493 (3)0.6090 (3)−0.3539 (2)0.0384 (5)
N30.6324 (3)0.7503 (3)0.1850 (2)0.0409 (5)
C10.0560 (4)0.3911 (4)−0.1764 (3)0.0391 (5)
H10.03040.2594−0.20750.047*
C2−0.1098 (4)0.4140 (4)−0.2225 (3)0.0389 (5)
H2−0.24400.2996−0.28280.047*
C3−0.0749 (4)0.6093 (4)−0.1781 (2)0.0364 (5)
C40.1289 (4)0.7751 (4)−0.0883 (3)0.0402 (5)
H40.15890.9085−0.05640.048*
C50.2849 (4)0.7384 (4)−0.0476 (3)0.0402 (5)
H50.42080.85060.01190.048*
C6−0.2526 (4)0.6408 (3)−0.2131 (3)0.0366 (5)
C7−0.5284 (4)0.6312 (4)−0.3955 (3)0.0418 (6)
H7A−0.48790.7492−0.42810.050*
H7B−0.56820.6550−0.30990.050*
C8−0.2853 (4)0.5629 (4)−0.4802 (3)0.0407 (6)
H8A−0.17060.5438−0.44780.049*
H8B−0.23490.6781−0.51630.049*
C90.6850 (4)0.8842 (4)0.2928 (3)0.0368 (5)
O1−0.3046 (2)0.6962 (2)−0.10853 (17)0.0385 (4)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Co10.0345 (3)0.0389 (3)0.0305 (3)0.0226 (2)0.0083 (2)0.0097 (2)
S10.0535 (4)0.0462 (4)0.0441 (4)0.0265 (4)0.0163 (3)0.0048 (3)
N10.0353 (10)0.0408 (11)0.0334 (10)0.0222 (9)0.0114 (8)0.0142 (8)
N20.0369 (11)0.0495 (12)0.0346 (10)0.0276 (10)0.0121 (8)0.0157 (9)
N30.0404 (11)0.0456 (11)0.0369 (11)0.0262 (10)0.0100 (9)0.0114 (10)
C10.0401 (13)0.0394 (12)0.0372 (12)0.0234 (11)0.0121 (10)0.0102 (10)
C20.0365 (12)0.0426 (13)0.0315 (12)0.0212 (11)0.0071 (10)0.0082 (10)
C30.0384 (12)0.0459 (13)0.0300 (12)0.0250 (11)0.0141 (10)0.0158 (10)
C40.0393 (13)0.0399 (13)0.0408 (13)0.0225 (11)0.0105 (10)0.0149 (10)
C50.0352 (12)0.0393 (13)0.0403 (13)0.0185 (11)0.0083 (10)0.0139 (10)
C60.0344 (12)0.0361 (12)0.0363 (12)0.0186 (10)0.0092 (10)0.0124 (10)
C70.0438 (14)0.0579 (15)0.0361 (13)0.0358 (13)0.0143 (11)0.0181 (11)
C80.0368 (12)0.0589 (15)0.0363 (13)0.0308 (12)0.0153 (10)0.0207 (11)
C90.0322 (12)0.0415 (13)0.0374 (13)0.0210 (11)0.0109 (10)0.0147 (11)
O10.0394 (9)0.0435 (9)0.0352 (9)0.0253 (8)0.0122 (7)0.0124 (7)

Geometric parameters (Å, °)

Co1—N12.1739 (19)C2—H20.9300
Co1—N32.026 (2)C3—C41.391 (3)
Co1—O1i2.2034 (16)C3—C61.496 (3)
S1—C91.620 (3)C4—C51.372 (4)
N1—C11.343 (3)C4—H40.9300
N1—C51.344 (3)C5—H50.9300
N2—C61.331 (3)C6—O11.256 (3)
N2—C71.464 (3)C7—C8ii1.515 (3)
N2—C81.475 (3)C7—H7A0.9700
N3—C91.170 (3)C7—H7B0.9700
C1—C21.377 (3)C8—C7ii1.515 (3)
C1—H10.9300C8—H8A0.9700
C2—C31.388 (3)C8—H8B0.9700
N3iii—Co1—N3180.0C3—C2—H2120.3
N3iii—Co1—N190.06 (8)C2—C3—C4118.0 (2)
N3—Co1—N189.94 (8)C2—C3—C6121.7 (2)
N3iii—Co1—N1iii89.94 (8)C4—C3—C6120.1 (2)
N3—Co1—N1iii90.06 (8)C5—C4—C3118.8 (2)
N1—Co1—N1iii180.00 (9)C5—C4—H4120.6
N3iii—Co1—O1i90.43 (7)C3—C4—H4120.6
N3—Co1—O1i89.57 (7)N1—C5—C4123.9 (2)
N1—Co1—O1i89.79 (7)N1—C5—H5118.0
N1iii—Co1—O1i90.21 (7)C4—C5—H5118.0
N3iii—Co1—O1iv89.57 (7)O1—C6—N2122.7 (2)
N3—Co1—O1iv90.43 (7)O1—C6—C3118.7 (2)
N1—Co1—O1iv90.21 (7)N2—C6—C3118.7 (2)
N1iii—Co1—O1iv89.79 (7)N2—C7—C8ii109.9 (2)
O1i—Co1—O1iv180.00 (9)N2—C7—H7A109.7
C1—N1—C5116.8 (2)C8ii—C7—H7A109.7
C1—N1—Co1121.35 (15)N2—C7—H7B109.7
C5—N1—Co1121.59 (15)C8ii—C7—H7B109.7
C6—N2—C7121.13 (19)H7A—C7—H7B108.2
C6—N2—C8125.8 (2)N2—C8—C7ii109.98 (19)
C7—N2—C8112.94 (18)N2—C8—H8A109.7
C9—N3—Co1171.96 (19)C7ii—C8—H8A109.7
N1—C1—C2123.1 (2)N2—C8—H8B109.7
N1—C1—H1118.4C7ii—C8—H8B109.7
C2—C1—H1118.4H8A—C8—H8B108.2
C1—C2—C3119.4 (2)N3—C9—S1179.0 (2)
C1—C2—H2120.3C6—O1—Co1v127.28 (15)
N3iii—Co1—N1—C132.05 (18)Co1—N1—C5—C4−173.16 (18)
N3—Co1—N1—C1−147.95 (18)C3—C4—C5—N1−0.4 (4)
O1i—Co1—N1—C1−58.38 (17)C7—N2—C6—O1−1.9 (4)
O1iv—Co1—N1—C1121.62 (17)C8—N2—C6—O1174.0 (2)
N3iii—Co1—N1—C5−154.13 (18)C7—N2—C6—C3178.1 (2)
N3—Co1—N1—C525.87 (18)C8—N2—C6—C3−6.1 (3)
O1i—Co1—N1—C5115.44 (18)C2—C3—C6—O1110.4 (3)
O1iv—Co1—N1—C5−64.56 (18)C4—C3—C6—O1−64.0 (3)
C5—N1—C1—C2−0.9 (3)C2—C3—C6—N2−69.5 (3)
Co1—N1—C1—C2173.23 (17)C4—C3—C6—N2116.0 (3)
N1—C1—C2—C30.3 (4)C6—N2—C7—C8ii−126.9 (2)
C1—C2—C3—C40.2 (3)C8—N2—C7—C8ii56.8 (3)
C1—C2—C3—C6−174.4 (2)C6—N2—C8—C7ii127.0 (2)
C2—C3—C4—C5−0.2 (3)C7—N2—C8—C7ii−56.8 (3)
C6—C3—C4—C5174.5 (2)N2—C6—O1—Co1v100.8 (2)
C1—N1—C5—C40.9 (3)C3—C6—O1—Co1v−79.1 (2)

Symmetry codes: (i) −x, −y+1, −z; (ii) −x−1, −y+1, −z−1; (iii) −x+1, −y+1, −z; (iv) x+1, y, z; (v) x−1, y, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2308).

References

  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Hou, H., Song, Y., Xu, H., Wei, Y., Fan, Y., Zhu, Y., Li, L. & Du, C. (2003). Macromolecules, 36, 999–1008.
  • Martin, D. P., Braverman, M. A. & LaDuca, R. L. (2007). Cryst. Growth Des.7, 2609–2619.
  • Martin, D. P., Knapp, W. R., Supkowski, R. M. & LaDuca, R. L. (2009). Inorg. Chim. Acta, 362, 1559–1564.
  • Palmer, D. (2007). CrystalMaker CrystalMaker Software, Bicester, England.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography