PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1271.
Published online 2010 May 8. doi:  10.1107/S1600536810015813
PMCID: PMC2979520

4-Methyl­benzene­carbothio­amide

Abstract

In the title mol­ecule, C8H9NS, the mean plane of the carbothio­amide group is twisted slightly with respect to the mean plane of the benzene ring, making a dihedral angle of 17.03 (10)°. The crystal structure is stabilized by inter­molecular N—H(...)S hydrogen bonds, resulting in the formation of eight-membered rings lying about inversion centers and representing R 2 2(8) and R 4 2(8) motifs. Futhermore, these hydrogen bonds build up chains parallel to the b axis.

Related literature

For the use of thio­amides as inter­mediates in the synthesis of various heterocyclic compounds, see: Zahid et al. (2009 [triangle]). For the uses of thio­amides, see: Lebana et al. (2008 [triangle]). For the biological activity of thio­amides, see: Jagodzinski (2003 [triangle]); Klimesova et al. (1999 [triangle]). For related structures, see: Khan et al. (2009a [triangle],b [triangle],c [triangle]); Jian et al. (2006 [triangle]); Ali et al. (2010 [triangle]). For graph-set notation, see: Etter et al. (1990 [triangle]); Bernstein et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1271-scheme1.jpg

Experimental

Crystal data

  • C8H9NS
  • M r = 151.22
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1271-efi1.jpg
  • a = 9.7341 (5) Å
  • b = 5.8391 (2) Å
  • c = 13.9055 (6) Å
  • β = 104.946 (3)°
  • V = 763.63 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 123 K
  • 0.10 × 0.06 × 0.06 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.967, T max = 0.980
  • 2741 measured reflections
  • 1482 independent reflections
  • 1399 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.034
  • wR(F 2) = 0.089
  • S = 1.06
  • 1482 reflections
  • 92 parameters
  • H-atom parameters constrained
  • Δρmax = 0.27 e Å−3
  • Δρmin = −0.24 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015813/dn2557sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015813/dn2557Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Thioamides are not only used as intermediates in the synthesis of various heterocyclic compounds (Zahid et al., 2009), they are important biologically active agents (Jagodzinski, 2003; Klimesova et al., 1999). In addition, they are important ligands in the field of coordination chemistry (Lebana et al., 2008). In continuation to our work on thioamides (Khan et al., 2009a; 2009b; 2009c; Ali et al., 2010), we have synthesized 4-methylbenzenecarbothioamide, (I). In this article we report the crystal structure of the title compound.

In the title molecule (Fig. 1), the bond distances and angles agree with the corresponding bond distances and angles reported in closely related compounds (Khan et al., 2009a; 2009b; 2009c; Jian et al., 2006; Ali et al., 2010). In the title compound, the mean-plane of the carbothioamide group (S1/N1/C7) is slightly twisted with respect to the mean-plane of the phenyl ring (C1–C6), making a dihedral angle of 17.03 (10)°.

The structure is stabilized by intermolecular N—H···S hydrogen bonds resulting in the formation of eight membered rings lying about inversion centers (Tab. 1 and Fig. 2). In the graph set notation (Etter et al., 1990; Bernstein et al., 1994) the hydrogen bonded rings may be best described as representing R22(8) and R42(8) motifs.Futhermore, these hydrogen bonds build up chains parallel to the b axis.

Experimental

4-Methylbenzonitrile (13.2 mmol) was added to a slurry of magnesium cholride hexahydrate (13.2 mmol) and sodium hydrogen sulphide hydrate (70%, 26.4 mmol) in dimethylformamide (35 ml) and the reaction mixture was stirred at room temperature for 4 h. The reaction mixture was poured into water (100 ml) and the resulting precipitates were collected by filtration. The product obtained was resuspended in 1 N HCl (50 ml), stirred for another 25 min, the precipitated solid filtered and washed with water. Recrystallization of the product from chloroform afforded the crystals of the title compound suitable for X-ray analysis.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms were included at geometrically idealized positions and refined in riding-model approximation with N—H = 0.88 Å and C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively. The Uiso(H) were allowed at 1.2/1.5Ueq(N/C). The final difference map was essentially featurless.

Figures

Fig. 1.
Molecular view of title compound with the atom labeling scheme. Ellipsoids are drawn at the 50% probability level. H atoms are represented as small sphere of arbitrary radii.
Fig. 2.
A part of the unit cell showing the N-H···S hydrogen bonds as dashed lines. H-atoms not involved in H-bonds have been excluded for clarity.

Crystal data

C8H9NSF(000) = 320
Mr = 151.22Dx = 1.315 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 1473 reflections
a = 9.7341 (5) Åθ = 1.0–26.0°
b = 5.8391 (2) ŵ = 0.34 mm1
c = 13.9055 (6) ÅT = 123 K
β = 104.946 (3)°Block, yellow
V = 763.63 (6) Å30.10 × 0.06 × 0.06 mm
Z = 4

Data collection

Nonius KappaCCD diffractometer1482 independent reflections
Radiation source: fine-focus sealed tube1399 reflections with I > 2σ(I)
graphiteRint = 0.025
ω and [var phi] scansθmax = 26.0°, θmin = 3.8°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −11→11
Tmin = 0.967, Tmax = 0.980k = −7→7
2741 measured reflectionsl = −16→16

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: difference Fourier map
wR(F2) = 0.089H-atom parameters constrained
S = 1.06w = 1/[σ2(Fo2) + (0.0373P)2 + 0.5912P] where P = (Fo2 + 2Fc2)/3
1482 reflections(Δ/σ)max < 0.001
92 parametersΔρmax = 0.27 e Å3
0 restraintsΔρmin = −0.24 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.15464 (4)0.79266 (7)0.03136 (3)0.02316 (16)
N10.19369 (15)0.3538 (2)0.06514 (10)0.0219 (3)
H1A0.24630.23130.08440.026*
H1B0.10070.34100.04400.026*
C10.41221 (16)0.5673 (3)0.10461 (11)0.0168 (3)
C20.48580 (17)0.7599 (3)0.08529 (11)0.0189 (3)
H20.43440.88490.04960.023*
C30.63277 (18)0.7714 (3)0.11743 (12)0.0207 (4)
H30.68050.90450.10370.025*
C40.71154 (17)0.5908 (3)0.16965 (11)0.0203 (4)
C50.63795 (18)0.3995 (3)0.19021 (11)0.0211 (4)
H50.68970.27530.22640.025*
C60.49105 (17)0.3872 (3)0.15894 (11)0.0196 (3)
H60.44330.25570.17440.023*
C70.25443 (17)0.5571 (3)0.06803 (11)0.0177 (3)
C80.87114 (18)0.6011 (3)0.20278 (13)0.0280 (4)
H8A0.90330.75320.18830.042*
H8B0.91140.48480.16710.042*
H8C0.90280.57190.27450.042*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0174 (2)0.0146 (2)0.0353 (3)0.00051 (14)0.00272 (18)0.00029 (16)
N10.0160 (7)0.0155 (7)0.0332 (8)−0.0010 (6)0.0045 (6)0.0019 (6)
C10.0192 (8)0.0154 (8)0.0163 (7)−0.0005 (6)0.0055 (6)−0.0017 (6)
C20.0205 (8)0.0156 (7)0.0204 (7)0.0009 (6)0.0050 (6)0.0019 (6)
C30.0215 (8)0.0192 (8)0.0221 (8)−0.0032 (6)0.0066 (6)−0.0004 (6)
C40.0193 (8)0.0229 (8)0.0182 (7)0.0001 (6)0.0041 (6)−0.0033 (6)
C50.0240 (8)0.0203 (8)0.0180 (7)0.0042 (6)0.0037 (6)0.0024 (6)
C60.0234 (8)0.0158 (8)0.0202 (7)−0.0018 (6)0.0068 (6)0.0009 (6)
C70.0204 (8)0.0161 (8)0.0170 (7)−0.0007 (6)0.0057 (6)−0.0007 (6)
C80.0194 (9)0.0328 (10)0.0299 (9)0.0000 (7)0.0026 (7)0.0007 (8)

Geometric parameters (Å, °)

S1—C71.6852 (16)C3—H30.9500
N1—C71.322 (2)C4—C51.396 (2)
N1—H1A0.8800C4—C81.503 (2)
N1—H1B0.8800C5—C61.385 (2)
C1—C21.396 (2)C5—H50.9500
C1—C61.403 (2)C6—H60.9500
C1—C71.489 (2)C8—H8A0.9800
C2—C31.386 (2)C8—H8B0.9800
C2—H20.9500C8—H8C0.9800
C3—C41.393 (2)
C7—N1—H1A120.0C6—C5—C4121.35 (15)
C7—N1—H1B120.0C6—C5—H5119.3
H1A—N1—H1B120.0C4—C5—H5119.3
C2—C1—C6118.11 (15)C5—C6—C1120.48 (15)
C2—C1—C7120.12 (14)C5—C6—H6119.8
C6—C1—C7121.77 (14)C1—C6—H6119.8
C3—C2—C1121.02 (15)N1—C7—C1117.39 (14)
C3—C2—H2119.5N1—C7—S1120.35 (12)
C1—C2—H2119.5C1—C7—S1122.26 (12)
C2—C3—C4120.99 (15)C4—C8—H8A109.5
C2—C3—H3119.5C4—C8—H8B109.5
C4—C3—H3119.5H8A—C8—H8B109.5
C3—C4—C5118.04 (15)C4—C8—H8C109.5
C3—C4—C8121.05 (15)H8A—C8—H8C109.5
C5—C4—C8120.91 (15)H8B—C8—H8C109.5
C6—C1—C2—C31.0 (2)C4—C5—C6—C10.6 (2)
C7—C1—C2—C3−179.07 (14)C2—C1—C6—C5−1.4 (2)
C1—C2—C3—C40.3 (2)C7—C1—C6—C5178.65 (14)
C2—C3—C4—C5−1.1 (2)C2—C1—C7—N1162.91 (15)
C2—C3—C4—C8178.76 (15)C6—C1—C7—N1−17.2 (2)
C3—C4—C5—C60.7 (2)C2—C1—C7—S1−17.1 (2)
C8—C4—C5—C6−179.18 (15)C6—C1—C7—S1162.78 (12)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1B···S1i0.882.563.4178 (14)166
N1—H1A···S1ii0.882.753.3179 (15)124

Symmetry codes: (i) −x, −y+1, −z; (ii) x, y−1, z.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: DN2557).

References

  • Ali, S., Hameed, S., Luqman, A., Akhtar, T. & Parvez, M. (2010). Acta Cryst. E66, o1272. [PMC free article] [PubMed]
  • Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [PubMed]
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Jagodzinski, T. S. (2003). Chem. Rev.103, 197–227. [PubMed]
  • Jian, F. F., Zaho, P., Zang, L. & Zheng, J. (2006). J. Fluorine Chem.127, 63–67.
  • Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009a). Acta Cryst. E65, o1128. [PMC free article] [PubMed]
  • Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009b). Acta Cryst. E65, o1333. [PMC free article] [PubMed]
  • Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009c). Acta Cryst. E65, o1446. [PMC free article] [PubMed]
  • Klimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Králova, K. (1999). Eur. J. Med. Chem.34, 433–440.
  • Lebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008–1016.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). Arkivoc, xi, 85–93.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography