PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1405.
Published online 2010 May 22. doi:  10.1107/S1600536810017964
PMCID: PMC2979516

4-(3-Nitro­phen­yl)-1-(2-oxoindolin-3-yl­idene)thio­semicarbazide

Abstract

In the title compound, C15H11N5O3S, intra­molecular N—H(...)N hydrogen bonding forms an S(5) ring motif, whereas N—H(...)O and C—H(...)S inter­actions type complete S(6) ring motifs. The 2-oxoindoline and 3-methoxy­phenyl rings are almost planar, with r.m.s. deviations of 0.0178 and 0.0149 Å, respectively, and form a dihedral angle of 33.59 (3)°. In the crystal, mol­ecules are inter­linked through the nitro groups in an end-to-end fashion via N—H(...)O and C—H(...)O inter­actions.

Related literature

For the preparation and structures of biologically important N 4-aryl-substituted isatin-3-thio­semicarbazones, see: Pervez et al. (2007 [triangle]). For related structures, see: (Pervez et al. 2010a [triangle],b [triangle]). For graph-set notation, see: Bernstein et al. (1995 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1405-scheme1.jpg

Experimental

Crystal data

  • C15H11N5O3S
  • M r = 341.35
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1405-efi1.jpg
  • a = 18.5545 (10) Å
  • b = 15.3852 (8) Å
  • c = 5.3367 (4) Å
  • V = 1523.44 (16) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.24 mm−1
  • T = 296 K
  • 0.24 × 0.16 × 0.14 mm

Data collection

  • Bruker Kappa APEXII CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Bruker, 2005 [triangle]) T min = 0.957, T max = 0.966
  • 7285 measured reflections
  • 2751 independent reflections
  • 1957 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.036
  • wR(F 2) = 0.096
  • S = 1.00
  • 2751 reflections
  • 217 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.16 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 992 Friedel pairs
  • Flack parameter: −0.05 (11)

Data collection: APEX2 (Bruker, 2007 [triangle]); cell refinement: SAINT (Bruker, 2007 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]) and PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: WinGX (Farrugia, 1999 [triangle]) and PLATON.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810017964/bq2210sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810017964/bq2210Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

HP, MSI and NS thank the Higher Education Commission (HEC), Pakistan, for financial assistance under the National Research Program for Universities (project No. 20-873/R&D/07/452).

supplementary crystallographic information

Comment

As a part of our work on the synthesis of certain biologically important isatin derivatives (Pervez et al., 2007), we report herein the structure and synthesis of the title compound (I, Fig. 1).

The crystal structure of (II) i.e. 4-(2-fluorophenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010b) and (III) i.e. 4-(3-methoxyphenyl)-1-(2-oxoindolin-3-ylidene)thiosemicarbazide (Pervez et al., 2010a) have been reported. The title compound (I) differs from (II) due to the attachment of nitro group at position-3 instead of fluoro at position-2 of the phenyl ring substituted at N4 of the thiosemicarbazone moiety. Similarly (I) differs from (III) due to the presence of nitro instead of methoxy function at position-3 of the phenyl ring. In (I) the 2-oxoindolin A (C1–C8/N1/O1), thiosemicarbazide B (N2/N3/C9/S1/N4) and the 3-methoxyphenyl C (C10—C16/O2) are planar with r. m. s. deviations of 0.0178, 0.0244 and 0.0149 Å, respectively. The dihedral angle between A/B, A/C and B/C is 8.71 (5)°, 33.59 (3)° and 39.32 (3)°, respectively. Due to intramolecular H-bondings (Table 1, Fig. 1), one S(5) and two S(6) (Bernstein et al., 1995) ring motifs are formed. The molecules are interlinked through nitro groups (Fig. 2) in end to end fashion due to N—H···O and C–H···O interactions completing R22(8) ring motifs. The N=O···π and C=S···π interaction play role in stabilizing the molecules.

Experimental

To a hot solution of isatin (0.74 g, 5.0 mmol) in ethanol (10 ml) containing a few drops of glacial acetic acid was added 4-(3-nitrophenyl)thiosemicarbazide (1.06 g, 5.0 mmol) dissolved in ethanol (10 ml) under stirring. The reaction mixture was then heated under reflux for 2 h. The orange crystalline solid formed during heating was collected by suction filtration. Thorough washing with hot ethanol followed by ether provided the desired compound (I) in pure form (1.08 g, 63%), m.p. 539 K. The single crystals of (I) were grown in ethyl acetate by slow evaporation at room temperature.

Refinement

The H-atoms were positioned geometrically (N–H = 0.86 Å, C–H = 0.93 Å) and refined as riding with Uiso(H) = xUeq(C, N), where x = 1.2 for all H-atoms.

Figures

Fig. 1.
View of the title compound with the atom numbering scheme. The thermal ellipsoids are drawn at the 50% probability level. The dotted lines indicate the intra-molecular H-bondings.
Fig. 2.
The partial packing (PLATON; Spek, 2009) which shows that molecules form dimers which are interlinked.

Crystal data

C15H11N5O3SF(000) = 704
Mr = 341.35Dx = 1.488 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 2751 reflections
a = 18.5545 (10) Åθ = 2.6–26.5°
b = 15.3852 (8) ŵ = 0.24 mm1
c = 5.3367 (4) ÅT = 296 K
V = 1523.44 (16) Å3Prism, light yellow
Z = 40.24 × 0.16 × 0.14 mm

Data collection

Bruker Kappa APEXII CCD diffractometer2751 independent reflections
Radiation source: fine-focus sealed tube1957 reflections with I > 2σ(I)
graphiteRint = 0.036
Detector resolution: 7.80 pixels mm-1θmax = 26.5°, θmin = 2.6°
ω scansh = −23→23
Absorption correction: multi-scan (SADABS; Bruker, 2005)k = −19→18
Tmin = 0.957, Tmax = 0.966l = −6→5
7285 measured reflections

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.036H-atom parameters constrained
wR(F2) = 0.096w = 1/[σ2(Fo2) + (0.0476P)2] where P = (Fo2 + 2Fc2)/3
S = 1.00(Δ/σ)max < 0.001
2751 reflectionsΔρmax = 0.16 e Å3
217 parametersΔρmin = −0.27 e Å3
1 restraintAbsolute structure: Flack (1983), 992 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: −0.05 (11)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.22195 (4)0.31899 (4)−0.2161 (2)0.0691 (3)
O10.38865 (11)0.31688 (13)0.4271 (5)0.0693 (6)
O20.04767 (14)0.25693 (14)−0.7833 (6)0.0987 (11)
O30.01628 (11)0.14340 (14)−0.9884 (5)0.0691 (6)
N10.42883 (11)0.21951 (15)0.7293 (5)0.0584 (7)
H10.45770.25290.81090.070*
N20.29869 (10)0.15983 (12)0.2774 (5)0.0462 (5)
N30.28351 (11)0.23206 (14)0.1419 (5)0.0511 (6)
H30.30360.28060.18080.061*
N40.21013 (11)0.14865 (14)−0.0938 (5)0.0485 (6)
H4A0.22230.11110.01790.058*
N50.04756 (12)0.17858 (16)−0.8135 (5)0.0573 (7)
C10.38904 (15)0.24541 (19)0.5275 (6)0.0526 (8)
C20.34565 (13)0.16630 (16)0.4526 (6)0.0443 (6)
C30.36668 (12)0.09693 (16)0.6207 (6)0.0440 (6)
C40.34648 (14)0.01067 (17)0.6375 (6)0.0529 (7)
H40.3137−0.01310.52470.063*
C50.37617 (16)−0.03939 (19)0.8262 (7)0.0627 (9)
H50.3632−0.09750.84150.075*
C60.42479 (16)−0.0037 (2)0.9915 (7)0.0666 (9)
H60.4435−0.03851.11820.080*
C70.44684 (14)0.0822 (2)0.9761 (6)0.0596 (8)
H70.48020.10541.08760.072*
C80.41680 (12)0.13180 (17)0.7871 (7)0.0483 (6)
C90.23686 (13)0.22885 (16)−0.0549 (6)0.0463 (7)
C100.16580 (12)0.11539 (16)−0.2849 (5)0.0448 (7)
C110.12759 (13)0.16537 (16)−0.4543 (6)0.0475 (7)
H110.12940.2257−0.44760.057*
C120.08673 (13)0.12370 (18)−0.6333 (6)0.0467 (7)
C130.08131 (14)0.03494 (18)−0.6548 (7)0.0594 (9)
H130.05380.0090−0.77990.071*
C140.11867 (17)−0.01353 (19)−0.4821 (8)0.0669 (10)
H140.1158−0.0738−0.48840.080*
C150.16025 (13)0.02508 (17)−0.3002 (7)0.0564 (8)
H150.1850−0.0094−0.18590.068*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0952 (5)0.0440 (4)0.0682 (6)0.0028 (4)−0.0217 (6)0.0061 (4)
O10.0843 (14)0.0538 (12)0.0697 (17)−0.0173 (10)−0.0095 (13)0.0108 (11)
O20.1169 (18)0.0549 (14)0.124 (3)−0.0056 (12)−0.060 (2)0.0259 (15)
O30.0610 (12)0.0922 (16)0.0540 (15)0.0020 (11)−0.0169 (12)0.0025 (12)
N10.0572 (13)0.0627 (15)0.055 (2)−0.0116 (10)−0.0129 (13)−0.0018 (13)
N20.0479 (11)0.0467 (13)0.0439 (15)0.0030 (8)−0.0014 (13)−0.0011 (13)
N30.0608 (14)0.0423 (13)0.0501 (17)−0.0004 (9)−0.0107 (13)0.0009 (11)
N40.0552 (12)0.0424 (12)0.0478 (16)0.0017 (10)−0.0072 (11)0.0080 (10)
N50.0487 (12)0.0632 (17)0.060 (2)−0.0013 (11)−0.0065 (13)0.0151 (14)
C10.0522 (15)0.0573 (18)0.048 (2)−0.0067 (13)0.0022 (15)−0.0028 (15)
C20.0422 (13)0.0482 (16)0.0425 (18)−0.0008 (10)−0.0003 (13)−0.0025 (12)
C30.0435 (13)0.0491 (16)0.0396 (18)0.0049 (11)0.0015 (13)−0.0005 (13)
C40.0522 (15)0.0536 (18)0.053 (2)0.0024 (12)0.0011 (14)0.0009 (14)
C50.0688 (17)0.0548 (17)0.064 (3)0.0099 (13)0.0049 (19)0.0084 (16)
C60.0682 (19)0.079 (2)0.053 (2)0.0252 (16)0.0012 (17)0.0140 (17)
C70.0555 (16)0.080 (2)0.043 (2)0.0080 (15)−0.0047 (15)−0.0012 (15)
C80.0467 (12)0.0569 (17)0.0414 (18)0.0025 (11)0.0002 (16)−0.0004 (15)
C90.0505 (13)0.0425 (15)0.0458 (19)0.0059 (12)0.0039 (15)−0.0024 (13)
C100.0415 (12)0.0475 (16)0.045 (2)0.0023 (10)0.0007 (12)0.0028 (12)
C110.0471 (14)0.0470 (15)0.0482 (19)0.0040 (11)−0.0006 (13)0.0067 (13)
C120.0391 (11)0.0543 (16)0.047 (2)0.0007 (12)−0.0016 (12)0.0111 (13)
C130.0543 (15)0.0562 (18)0.068 (3)−0.0087 (13)−0.0116 (17)0.0010 (15)
C140.0692 (18)0.0454 (16)0.086 (3)−0.0022 (14)−0.0198 (19)0.0051 (17)
C150.0495 (14)0.0459 (16)0.074 (2)−0.0006 (12)−0.0134 (16)0.0120 (14)

Geometric parameters (Å, °)

S1—C91.655 (3)C4—C51.382 (4)
O1—C11.223 (3)C4—H40.9300
O2—N51.216 (3)C5—C61.376 (5)
O3—N51.225 (3)C5—H50.9300
N1—C11.365 (4)C6—C71.386 (4)
N1—C81.402 (3)C6—H60.9300
N1—H10.8600C7—C81.382 (4)
N2—C21.282 (4)C7—H70.9300
N2—N31.355 (3)C10—C111.382 (4)
N3—C91.362 (4)C10—C151.396 (3)
N3—H30.8600C11—C121.378 (4)
N4—C91.346 (3)C11—H110.9300
N4—C101.407 (3)C12—C131.374 (4)
N4—H4A0.8600C13—C141.373 (4)
N5—C121.472 (4)C13—H130.9300
C1—C21.513 (4)C14—C151.375 (4)
C2—C31.448 (4)C14—H140.9300
C3—C41.382 (3)C15—H150.9300
C3—C81.393 (4)
C1—N1—C8111.6 (2)C5—C6—H6118.8
C1—N1—H1124.2C7—C6—H6118.8
C8—N1—H1124.2C8—C7—C6116.8 (3)
C2—N2—N3117.8 (2)C8—C7—H7121.6
N2—N3—C9120.9 (2)C6—C7—H7121.6
N2—N3—H3119.5C7—C8—C3121.4 (2)
C9—N3—H3119.5C7—C8—N1128.9 (3)
C9—N4—C10131.3 (2)C3—C8—N1109.7 (3)
C9—N4—H4A114.3N4—C9—N3112.7 (2)
C10—N4—H4A114.3N4—C9—S1128.8 (2)
O2—N5—O3122.7 (3)N3—C9—S1118.5 (2)
O2—N5—C12118.7 (3)C11—C10—C15118.5 (3)
O3—N5—C12118.6 (2)C11—C10—N4124.9 (2)
O1—C1—N1127.7 (3)C15—C10—N4116.6 (2)
O1—C1—C2127.2 (3)C12—C11—C10118.5 (2)
N1—C1—C2105.2 (2)C12—C11—H11120.8
N2—C2—C3125.3 (2)C10—C11—H11120.8
N2—C2—C1128.1 (2)C13—C12—C11124.1 (3)
C3—C2—C1106.6 (2)C13—C12—N5118.6 (3)
C4—C3—C8120.6 (3)C11—C12—N5117.3 (2)
C4—C3—C2132.5 (3)C14—C13—C12116.5 (3)
C8—C3—C2106.9 (2)C14—C13—H13121.7
C3—C4—C5118.3 (3)C12—C13—H13121.7
C3—C4—H4120.8C13—C14—C15121.5 (3)
C5—C4—H4120.8C13—C14—H14119.2
C6—C5—C4120.4 (3)C15—C14—H14119.2
C6—C5—H5119.8C14—C15—C10120.8 (3)
C4—C5—H5119.8C14—C15—H15119.6
C5—C6—C7122.4 (3)C10—C15—H15119.6

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1···O3i0.862.213.058 (3)170
N3—H3···O10.862.132.797 (3)134
N4—H4A···N20.862.122.580 (3)113
C7—H7···O2i0.932.553.358 (4)145
C11—H11···S10.932.563.204 (3)127

Symmetry codes: (i) x+1/2, −y+1/2, z+2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2210).

References

  • Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555-1573.
  • Bruker (2005). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Bruker (2007). APEX2 and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Farrugia, L. J. (1999). J. Appl. Cryst.32, 837–838.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Pervez, H., Iqbal, M. S., Saira, N., Yaqub, M. & Tahir, M. N. (2010a). Acta Cryst. E66, o1404. [PMC free article] [PubMed]
  • Pervez, H., Iqbal, M. S., Tahir, M. Y., Choudhary, M. I. & Khan, K. M. (2007). Nat. Prod. Res.21, 1178–1186. [PubMed]
  • Pervez, H., Yaqub, M., Ramzan, M., Iqbal, M. S. & Tahir, M. N. (2010b). Acta Cryst. E66, o1018. [PMC free article] [PubMed]
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography