PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1293.
Published online 2010 May 8. doi:  10.1107/S1600536810016090
PMCID: PMC2979515

2,2-Dichloro-1-[(2R,5S)-5-ethyl-2-methyl-2-propyl-1,3-oxazolidin-3-yl]ethanone

Abstract

In the title compound, C11H19Cl2NO2, the oxazolidine ring is in an envelope conformation with the O atom forming the flap. In the crystal structure, mol­ecules are linked by weak inter­molecular C—H(...)O hydrogen bonds, forming chains.

Related literature

For general background to N-dichloro­acetyl oxazolidine, see: Agami & Couty (2004 [triangle]); Abu-Qare & Duncan (2002 [triangle]); Guirado et al. (2003 [triangle]); Davies & Caseley (1999 [triangle]). For the bioactivity of related compounds, see: Del Buono et al. (2007 [triangle]); Hatzios & Burgos (2004 [triangle]). For details of the synthesis, see: Fu et al. (2009 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1293-scheme1.jpg

Experimental

Crystal data

  • C11H19Cl2NO2
  • M r = 268.17
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1293-efi1.jpg
  • a = 6.4834 (12) Å
  • b = 10.795 (2) Å
  • c = 20.030 (4) Å
  • V = 1401.8 (5) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.45 mm−1
  • T = 293 K
  • 0.32 × 0.24 × 0.20 mm

Data collection

  • Bruker SMART CCD diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 1996 [triangle]) T min = 0.869, T max = 0.915
  • 14134 measured reflections
  • 3499 independent reflections
  • 2117 reflections with I > 2σ(I)
  • R int = 0.058

Refinement

  • R[F 2 > 2σ(F 2)] = 0.084
  • wR(F 2) = 0.258
  • S = 1.02
  • 3499 reflections
  • 148 parameters
  • H-atom parameters constrained
  • Δρmax = 0.58 e Å−3
  • Δρmin = −0.39 e Å−3
  • Absolute structure: Flack (1983 [triangle]) 1468 Friedels
  • Flack parameter: 0.02 (15)

Data collection: SMART (Bruker, 1998 [triangle]); cell refinement: SAINT (Bruker, 1998 [triangle]); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: SHELXTL (Sheldrick, 2008 [triangle]); software used to prepare material for publication: SHELXTL.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016090/lh5034sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016090/lh5034Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

We thank the Heilongjiang Province Foundation for Young Scholars (QC2009C44), the Innovation Foundation for Young Scholars of Harbin (No.2007RFQXN017),the China Postdoctoral Science Foundation (20080430951), the Heilongjiang Province Postdoctoral Science Foundation and the Northeast Agricultural University Doctoral Foundation for generously supporting this study.

supplementary crystallographic information

Comment

N-dichloroacetyl oxazolidines are becoming increasingly important with their excellent biological activity (Agami & Couty, 2004; Abu-Qare & Duncan, 2002; Guirado et al., 2003; Davies & Caseley, 1999). The discovery of N-dichloroacetyl oxazolidine as a herbicide safener has drawn widespread attention in agricultural biochemistry (Del Buono et al., 2007; Hatzios & Burgos, 2004). As a part of our ongoing investigation of oxazolidine derivatives (Fu et al., 2009) we prepared the title compound.

The molecular structure of the title compound is shown in Fig. 1. In the crystal structure, molecules are linked by weak intermolecular C—H···O hydrogen bonds to form one-dimensional chains (Fig. 2).

Experimental

The title compound was prepared according to the literature procedure (Fu et al., 2009). The single crystal suitable for X-ray structural analysis was obtained by slow evaporation in petroleum ether and ethyl acetate at room temperature. The title enantiomer spontaneously resolved from a racemic mixture during the crystallization.

Refinement

All H atoms were initially located in a different Fourier map. The C—H atoms were then constrained to an ideal geometry, with C—H = 0.96-0.98 Å and Uiso(H) = 1.2Ueq(C) or 1.5Ueq(C) for methyl H atoms.

Figures

Fig. 1.
The molecular structure of the title compound, with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
Fig. 2.
A packing diagram for (I), showing weak hydrogen bonds as dashed lines.

Crystal data

C11H19Cl2NO2F(000) = 568.0
Mr = 268.17Dx = 1.271 Mg m3Dm = 1.271 Mg m3Dm measured by not measured
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3142 reflections
a = 6.4834 (12) Åθ = 2.8–20.6°
b = 10.795 (2) ŵ = 0.45 mm1
c = 20.030 (4) ÅT = 293 K
V = 1401.8 (5) Å3Block, colourless
Z = 40.32 × 0.24 × 0.20 mm

Data collection

Bruker SMART CCD diffractometer3499 independent reflections
Radiation source: fine-focus sealed tube2117 reflections with I > 2σ(I)
graphiteRint = 0.058
[var phi] and ω scansθmax = 28.4°, θmin = 2.8°
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)h = −8→8
Tmin = 0.869, Tmax = 0.915k = −14→14
14134 measured reflectionsl = −25→26

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.084H-atom parameters constrained
wR(F2) = 0.258w = 1/[σ2(Fo2) + (0.165P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3499 reflectionsΔρmax = 0.58 e Å3
148 parametersΔρmin = −0.39 e Å3
0 restraintsAbsolute structure: Flack (1983) 1468 Friedels
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.02 (15)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.5074 (7)0.9192 (4)0.2071 (2)0.0675 (11)
H10.49660.83650.22700.081*
C20.5889 (7)1.0103 (3)0.2598 (2)0.0638 (10)
C30.7886 (9)0.8326 (4)0.3065 (3)0.0789 (13)
H3A0.67840.77580.31810.095*
H3B0.84540.80890.26360.095*
C40.9470 (13)0.8334 (4)0.3575 (3)0.105 (2)
H41.06270.85940.32930.126*
C51.0407 (13)0.7301 (5)0.3866 (4)0.122 (3)
H5A1.09220.68010.35000.147*
H5B0.93060.68280.40720.147*
C61.2052 (13)0.7357 (6)0.4353 (3)0.111 (2)
H6A1.33580.73620.41270.166*
H6B1.19760.66470.46400.166*
H6C1.19150.80980.46140.166*
C70.8170 (7)1.0342 (4)0.3589 (2)0.0680 (10)
C80.9703 (10)1.1251 (5)0.3287 (3)0.0925 (16)
H8A1.06351.15330.36270.139*
H8B0.89731.19460.31040.139*
H8C1.04701.08470.29390.139*
C90.6750 (10)1.1009 (5)0.4051 (3)0.0875 (14)
H9A0.75501.13100.44270.105*
H9B0.62051.17270.38190.105*
C100.4982 (11)1.0277 (6)0.4315 (3)0.1013 (18)
H10A0.54810.94940.44880.122*
H10B0.40231.01030.39550.122*
C110.3855 (15)1.0989 (8)0.4874 (4)0.127 (3)
H11A0.47811.11190.52420.190*
H11B0.26881.05160.50230.190*
H11C0.33961.17750.47070.190*
Cl10.6885 (3)0.91462 (14)0.14073 (7)0.0996 (5)
Cl20.2642 (2)0.96549 (13)0.17873 (9)0.1008 (5)
N10.7143 (5)0.9597 (3)0.30507 (18)0.0629 (8)
O10.9265 (6)0.9417 (3)0.39428 (17)0.0793 (9)
O20.5407 (6)1.1193 (3)0.2580 (2)0.0859 (10)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.072 (2)0.0401 (18)0.090 (3)0.0031 (17)−0.013 (2)0.0002 (18)
C20.071 (2)0.0396 (17)0.081 (3)0.0077 (17)0.000 (2)−0.0023 (17)
C30.093 (3)0.0354 (18)0.108 (3)0.014 (2)−0.021 (3)−0.0090 (18)
C40.154 (5)0.046 (2)0.114 (4)0.033 (3)−0.043 (4)−0.013 (3)
C50.149 (6)0.059 (3)0.160 (6)0.031 (4)−0.071 (5)−0.020 (3)
C60.127 (5)0.070 (3)0.134 (5)0.010 (4)−0.031 (4)0.013 (3)
C70.084 (3)0.0379 (17)0.082 (3)0.0039 (18)−0.010 (2)−0.0029 (16)
C80.101 (4)0.052 (2)0.124 (4)−0.020 (3)−0.013 (3)0.003 (3)
C90.109 (4)0.060 (3)0.093 (3)0.006 (3)0.003 (3)−0.010 (2)
C100.105 (4)0.075 (3)0.124 (5)0.010 (3)0.006 (3)0.000 (3)
C110.149 (6)0.124 (6)0.107 (4)0.021 (5)0.035 (4)−0.005 (4)
Cl10.1169 (11)0.0780 (8)0.1038 (9)−0.0063 (8)0.0152 (9)−0.0185 (7)
Cl20.0899 (8)0.0761 (8)0.1365 (12)0.0154 (7)−0.0350 (8)−0.0093 (7)
N10.0715 (19)0.0298 (13)0.087 (2)0.0036 (14)−0.0060 (17)−0.0042 (13)
O10.102 (2)0.0413 (14)0.095 (2)0.0055 (15)−0.0232 (19)−0.0079 (14)
O20.114 (3)0.0338 (13)0.110 (2)0.0152 (16)−0.023 (2)−0.0013 (14)

Geometric parameters (Å, °)

C1—C21.536 (6)C6—H6C0.9600
C1—Cl21.750 (4)C7—O11.416 (5)
C1—Cl11.775 (5)C7—C91.491 (7)
C1—H10.9800C7—N11.501 (5)
C2—O21.218 (5)C7—C81.523 (7)
C2—N11.335 (6)C8—H8A0.9600
C3—C41.448 (8)C8—H8B0.9600
C3—N11.454 (5)C8—H8C0.9600
C3—H3A0.9700C9—C101.490 (9)
C3—H3B0.9700C9—H9A0.9700
C4—O11.388 (6)C9—H9B0.9700
C4—C51.397 (7)C10—C111.542 (9)
C4—H40.9800C10—H10A0.9700
C5—C61.446 (10)C10—H10B0.9700
C5—H5A0.9700C11—H11A0.9600
C5—H5B0.9700C11—H11B0.9600
C6—H6A0.9600C11—H11C0.9600
C6—H6B0.9600
C2—C1—Cl2110.5 (3)O1—C7—N1101.8 (3)
C2—C1—Cl1107.8 (3)C9—C7—N1115.5 (4)
Cl2—C1—Cl1111.1 (3)O1—C7—C8109.0 (4)
C2—C1—H1109.1C9—C7—C8109.8 (4)
Cl2—C1—H1109.1N1—C7—C8110.5 (4)
Cl1—C1—H1109.1C7—C8—H8A109.5
O2—C2—N1124.9 (4)C7—C8—H8B109.5
O2—C2—C1120.7 (4)H8A—C8—H8B109.5
N1—C2—C1114.5 (3)C7—C8—H8C109.5
C4—C3—N1104.1 (4)H8A—C8—H8C109.5
C4—C3—H3A110.9H8B—C8—H8C109.5
N1—C3—H3A110.9C10—C9—C7116.0 (5)
C4—C3—H3B110.9C10—C9—H9A108.3
N1—C3—H3B110.9C7—C9—H9A108.3
H3A—C3—H3B108.9C10—C9—H9B108.3
O1—C4—C5119.5 (5)C7—C9—H9B108.3
O1—C4—C3108.1 (4)H9A—C9—H9B107.4
C5—C4—C3126.8 (5)C9—C10—C11111.0 (6)
O1—C4—H497.9C9—C10—H10A109.4
C5—C4—H497.9C11—C10—H10A109.4
C3—C4—H497.9C9—C10—H10B109.4
C4—C5—C6124.7 (6)C11—C10—H10B109.4
C4—C5—H5A106.2H10A—C10—H10B108.0
C6—C5—H5A106.2C10—C11—H11A109.5
C4—C5—H5B106.2C10—C11—H11B109.5
C6—C5—H5B106.2H11A—C11—H11B109.5
H5A—C5—H5B106.3C10—C11—H11C109.5
C5—C6—H6A109.5H11A—C11—H11C109.5
C5—C6—H6B109.5H11B—C11—H11C109.5
H6A—C6—H6B109.5C2—N1—C3127.0 (3)
C5—C6—H6C109.5C2—N1—C7122.6 (3)
H6A—C6—H6C109.5C3—N1—C7110.1 (3)
H6B—C6—H6C109.5C4—O1—C7112.1 (3)
O1—C7—C9109.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
C1—H1···O2i0.982.383.327 (5)163

Symmetry codes: (i) −x+1, y−1/2, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH5034).

References

  • Abu-Qare, A. W. & Duncan, H. J. (2002). Chemosphere, 48, 965–974. [PubMed]
  • Agami, C. & Couty, F. (2004). Eur. J. Org. Chem.69, 677–685.
  • Bruker (1998). SMART and SAINT Bruker AXS Inc., Madison, Wisconsin, USA.
  • Davies, J. & Caseley, J. C. (1999). Pestic. Sci.55, 1043–1046.
  • Del Buono, D., Scarponi, L. & Espen, L. (2007). Phytochemistry, 68, 2614–2618. [PubMed]
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Fu, Y., Fu, H. G., Ye, F., Mao, J. D. & Wen, X. T. (2009). Synth. Commun.39, 2454–2463.
  • Guirado, A., Andreu, R. & Galvez, J. (2003). Tetrahedron Lett.44, 3809–3841.
  • Hatzios, K. K. & Burgos, N. (2004). Weed Sci.52, 454–467.
  • Sheldrick, G. M. (1996). SADABS University of Göttingen, Germany.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography