PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1436–o1437.
Published online 2010 May 22. doi:  10.1107/S1600536810018623
PMCID: PMC2979508

(2E)-N-(3,5-Dibromo-4-methoxy­phen­yl)-2-(hydroxy­imino)acetamide

Abstract

The title compound, C9H8Br2N2O3, is planar (r.m.s. deviation = 0.030 Å) with the exception of the terminal methyl group which lies out of the plane [1.219 (3) Å]. The conformation about the C=N double bond [1.268 (3) Å] is E. An intra­molecular N—H(...)N hydrogen bond occurs. Linear supra­molecular chains along the b axis mediated by O—H(...)O hydrogen-bonding inter­actions feature in the crystal structure. These chains are also stabilized by weak C—H(...)N contacts.

Related literature

For the preparation of isonitro­soacetanilides from aniline derivatives, see: Garden et al. (1997 [triangle]). For the use of isonitro­soacetanilides as precursors of pharmacologically important heterocyclic compounds, see: da Silva et al. (2001 [triangle]); Garden et al. (2002 [triangle]); Matheus et al. (2007 [triangle]); Maronas et al. (2008 [triangle]). For related structures, see: Briansó et al. (1974 [triangle]); Plana et al. (1976 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1436-scheme1.jpg

Experimental

Crystal data

  • C9H8Br2N2O3
  • M r = 351.98
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1436-efi1.jpg
  • a = 10.3841 (2) Å
  • b = 8.8535 (1) Å
  • c = 13.0164 (3) Å
  • β = 106.356 (1)°
  • V = 1148.24 (4) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 7.05 mm−1
  • T = 120 K
  • 0.20 × 0.10 × 0.01 mm

Data collection

  • Nonius KappaCCD area-detector diffractometer
  • Absorption correction: multi-scan (SADABS; Sheldrick, 2007 [triangle]) T min = 0.715, T max = 1.000
  • 14309 measured reflections
  • 2643 independent reflections
  • 2306 reflections with I > 2σ(I)
  • R int = 0.036

Refinement

  • R[F 2 > 2σ(F 2)] = 0.028
  • wR(F 2) = 0.090
  • S = 1.16
  • 2643 reflections
  • 149 parameters
  • 1 restraint
  • H-atom parameters constrained
  • Δρmax = 0.77 e Å−3
  • Δρmin = −0.86 e Å−3

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 (Farrugia, 1997 [triangle]) and DIAMOND (Brandenburg, 2006 [triangle]); software used to prepare material for publication: publCIF (Westrip, 2010 [triangle]).

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810018623/hg2689sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810018623/hg2689Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. SJG thanks CNPq and FAPERJ for financial support.

supplementary crystallographic information

Comment

Isonitrosoacetanilides, readily available from aniline derivatives (Garden et al., 1997), have found use as precursors of pharmacologically important heterocyclic compounds (da Silva et al., 2001; Garden et al., 2002; Matheus et al., 2007; Maronas et al., 2008).

The molecular structure of (I), Fig. 1, is essentially planar with the exception of the terminal methyl group. Thus, the r.m.s. deviation of all non-hydrogen atoms, excluding the methyl-C9 atom, is 0.030 Å; the C9 atom lies 1.219 (3) Å out of the plane. The conformation about the C2═N2 double bond [1.268 (3) Å] is E. The observed planarity is partially stabilised by an intramolecular N–H···N hydrogen bond (Table 1). There two other methoxy substituted 2-(hydroxyimino)-N-arylacetamide structures available for comparison,i.e. o-OMe (Plana et al., 1976) and p-OMe (Briansó et al., 1974) derivatives. The geometric parameters in these match closely those in (I). The major difference in the three structures relate to the non-planarity of (I) compared to the planarity in the literature structures. The proximity of the OMe group to two bromido substituents in (I) is the likely explanation for the deviation from planarity in (I). The crystal packing is dominated by O–H···O hydrogen bonding interactions that lead to the formation of a supramolecular linear chain along the b axis, Fig. 2 and Table 1. These chains are also stabilised by weak C–H···N contacts, Table 1.

Experimental

The compound was prepared as previously reported from 3,5-dibromo-4-methoxyaniline, hydroxylamine.hydrogen sulfate in aqueous ethanol, containing sodium sulfate and CCl3CH(OH)2 (Garden et al., 1997). The sample for the crystallographic study was recrystallised from EtOH, m.p. 463 K.

Refinement

The O-, N- and C-bound H atoms were geometrically placed (O–H = 0.84 Å, N–H = 0.88 Å and C–H = 0.95–0.98 Å) and refined as riding with Uiso(H) = 1.2-1.5Ueq(parent atom).

Figures

Fig. 1.
The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.
Fig. 2.
A view of a supramolecular array in (I) aligned along the b axis. The O–H···O hydrogen bonding interactions are shown as orange dashed lines. Colour code: Br, olive; O, red; N, blue; C, grey; and H, green.

Crystal data

C9H8Br2N2O3F(000) = 680
Mr = 351.98Dx = 2.036 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2760 reflections
a = 10.3841 (2) Åθ = 2.9–27.5°
b = 8.8535 (1) ŵ = 7.05 mm1
c = 13.0164 (3) ÅT = 120 K
β = 106.356 (1)°Plate, colourless
V = 1148.24 (4) Å30.20 × 0.10 × 0.01 mm
Z = 4

Data collection

Nonius KappaCCD area-detector diffractometer2643 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode2306 reflections with I > 2σ(I)
10 cm confocal mirrorsRint = 0.036
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
[var phi] and ω scansh = −13→13
Absorption correction: multi-scan (SADABS; Sheldrick, 2007)k = −11→10
Tmin = 0.715, Tmax = 1.000l = −16→16
14309 measured reflections

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.090H-atom parameters constrained
S = 1.16w = 1/[σ2(Fo2) + (0.0554P)2 + 0.0437P] where P = (Fo2 + 2Fc2)/3
2643 reflections(Δ/σ)max = 0.001
149 parametersΔρmax = 0.77 e Å3
1 restraintΔρmin = −0.86 e Å3

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
Br10.51024 (3)0.51328 (3)0.64286 (2)0.03073 (12)
Br20.57429 (3)1.12760 (3)0.76735 (2)0.03212 (12)
O10.6650 (2)0.4317 (2)1.04372 (14)0.0253 (4)
O20.7998 (2)0.6540 (2)1.37265 (15)0.0268 (4)
H2O0.81500.74161.39790.040*
O30.50326 (19)0.8555 (2)0.61613 (15)0.0248 (4)
N20.7577 (2)0.6746 (2)1.26323 (17)0.0228 (5)
N10.6742 (2)0.6890 (2)1.04718 (16)0.0234 (5)
H1N0.69160.76641.09140.028*
C10.6888 (3)0.5517 (3)1.0935 (2)0.0216 (5)
C20.7347 (3)0.5508 (3)1.2123 (2)0.0235 (5)
H20.74690.45771.25010.028*
C30.6344 (3)0.7255 (3)0.9367 (2)0.0217 (5)
C40.5979 (3)0.6159 (3)0.8574 (2)0.0221 (5)
H40.59950.51180.87550.027*
C50.5590 (3)0.6618 (3)0.7514 (2)0.0218 (5)
C60.5517 (2)0.8133 (3)0.7211 (2)0.0221 (5)
C70.5887 (3)0.9197 (3)0.8032 (2)0.0238 (5)
C80.6305 (3)0.8778 (3)0.9101 (2)0.0242 (6)
H80.65620.95240.96450.029*
C90.6056 (3)0.8606 (4)0.5605 (2)0.0332 (6)
H9A0.66830.94310.58940.050*
H9B0.56350.87760.48400.050*
H9C0.65440.76450.57040.050*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
Br10.0466 (2)0.02593 (18)0.01798 (18)−0.00608 (11)0.00633 (13)−0.00244 (9)
Br20.0420 (2)0.01905 (17)0.0298 (2)−0.00089 (10)0.00100 (13)0.00607 (10)
O10.0388 (11)0.0189 (9)0.0175 (9)−0.0002 (8)0.0067 (8)0.0009 (7)
O20.0400 (11)0.0222 (9)0.0154 (9)−0.0022 (8)0.0033 (8)0.0001 (7)
O30.0255 (9)0.0305 (10)0.0166 (9)−0.0010 (7)0.0031 (7)0.0081 (7)
N20.0274 (12)0.0235 (11)0.0159 (11)−0.0009 (8)0.0033 (8)0.0000 (8)
N10.0321 (12)0.0184 (10)0.0165 (11)−0.0005 (9)0.0015 (9)0.0004 (8)
C10.0235 (12)0.0220 (12)0.0181 (13)−0.0011 (10)0.0042 (10)0.0000 (10)
C20.0307 (14)0.0196 (12)0.0193 (13)−0.0001 (10)0.0054 (10)0.0011 (10)
C30.0243 (12)0.0209 (12)0.0190 (13)0.0013 (10)0.0046 (10)0.0015 (9)
C40.0246 (13)0.0197 (12)0.0215 (14)0.0008 (9)0.0056 (10)0.0028 (9)
C50.0214 (12)0.0250 (12)0.0184 (13)−0.0019 (10)0.0045 (10)−0.0018 (10)
C60.0188 (12)0.0261 (13)0.0195 (13)0.0009 (10)0.0022 (10)0.0053 (10)
C70.0255 (13)0.0184 (12)0.0248 (14)−0.0010 (10)0.0028 (10)0.0060 (10)
C80.0267 (13)0.0244 (13)0.0189 (13)−0.0024 (10)0.0024 (10)0.0001 (9)
C90.0345 (16)0.0420 (16)0.0244 (15)0.0030 (12)0.0103 (12)0.0102 (12)

Geometric parameters (Å, °)

Br1—C51.892 (3)C2—H20.9500
Br2—C71.894 (3)C3—C41.390 (4)
O1—C11.233 (3)C3—C81.390 (4)
O2—N21.379 (3)C4—C51.385 (3)
O2—H2o0.8400C4—H40.9500
O3—C61.368 (3)C5—C61.394 (4)
O3—C91.445 (3)C6—C71.395 (4)
N2—C21.268 (3)C7—C81.386 (4)
N1—C11.346 (3)C8—H80.9500
N1—C31.417 (3)C9—H9A0.9800
N1—H1N0.8800C9—H9B0.9800
C1—C21.484 (4)C9—H9C0.9800
N2—O2—H2o104.6C4—C5—C6122.8 (2)
C6—O3—C9113.1 (2)C4—C5—Br1118.79 (19)
C2—N2—O2112.6 (2)C6—C5—Br1118.39 (19)
C1—N1—C3128.6 (2)O3—C6—C5121.4 (2)
C1—N1—H1N115.7O3—C6—C7121.7 (2)
C3—N1—H1N115.7C5—C6—C7116.8 (2)
O1—C1—N1124.3 (2)C8—C7—C6121.9 (2)
O1—C1—C2120.1 (2)C8—C7—Br2119.2 (2)
N1—C1—C2115.7 (2)C6—C7—Br2118.81 (19)
N2—C2—C1119.9 (2)C7—C8—C3119.3 (2)
N2—C2—H2120.0C7—C8—H8120.4
C1—C2—H2120.0C3—C8—H8120.4
C4—C3—C8120.6 (2)O3—C9—H9A109.5
C4—C3—N1122.4 (2)O3—C9—H9B109.5
C8—C3—N1117.0 (2)H9A—C9—H9B109.5
C5—C4—C3118.5 (2)O3—C9—H9C109.5
C5—C4—H4120.7H9A—C9—H9C109.5
C3—C4—H4120.7H9B—C9—H9C109.5
C3—N1—C1—O1−2.1 (4)C4—C5—C6—O3−175.0 (2)
C3—N1—C1—C2178.9 (2)Br1—C5—C6—O33.8 (3)
O2—N2—C2—C1−179.9 (2)C4—C5—C6—C71.3 (4)
O1—C1—C2—N2−179.2 (3)Br1—C5—C6—C7−179.86 (19)
N1—C1—C2—N2−0.2 (4)O3—C6—C7—C8176.2 (2)
C1—N1—C3—C42.9 (4)C5—C6—C7—C8−0.1 (4)
C1—N1—C3—C8−178.4 (3)O3—C6—C7—Br2−1.3 (4)
C8—C3—C4—C50.7 (4)C5—C6—C7—Br2−177.56 (18)
N1—C3—C4—C5179.3 (2)C6—C7—C8—C3−0.8 (4)
C3—C4—C5—C6−1.7 (4)Br2—C7—C8—C3176.7 (2)
C3—C4—C5—Br1179.57 (19)C4—C3—C8—C70.5 (4)
C9—O3—C6—C5−88.4 (3)N1—C3—C8—C7−178.2 (2)
C9—O3—C6—C795.4 (3)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1n···N20.882.302.702 (3)108
O2—H2o···O1i0.841.832.672 (3)175
C2—H2···N2ii0.952.513.345 (3)146

Symmetry codes: (i) −x+3/2, y+1/2, −z+5/2; (ii) −x+3/2, y−1/2, −z+5/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG2689).

References

  • Brandenburg, K. (2006). DIAMOND Crystal Impact GbR, Bonn, Germany.
  • Briansó, J. L., Miravitlles, C., Plana, F. & Font-Altaba, M. (1974). Estud. Geol. (Madrid), 30, 423–428.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Garden, S. J., da Silva, R. B. & Pinto, A. C. (2002). Tetrahedron, 58, 8399–8412.
  • Garden, S. J., Torres, J. C., Ferreira, A. A., Silva, R. B. & Pinto, A. C. (1997). Tetrahedron Lett 38, 1501–1504.
  • Hooft, R. W. W. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Maronas, P. A., Sudo, R. T., Correa, M. B., Pinto, A. C., Garden, S. J., Trachez, M. M. & Zapata-Sudo, G. (2008). Clin. Exp. Pharmacol. Physiol 35, 1091–1096. [PubMed]
  • Matheus, M. E., Violante, F. D., Garden, S. J., Pinto, A. C. & Fernandes, P. D. (2007). Eur. J. Pharmacol 556, 200–206. [PubMed]
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Plana, F., Briansó, J. L., Miravitlles, C., Solans, X., Font-Altaba, M., Dideberg, O., Declercq, J. P. & Germain, G. (1976). Acta Cryst. B32, 2660–2664.
  • Sheldrick, G. M. (2007). SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Silva, J. F. M. da, Garden, S. J. & Pinto, A. C. (2001). J. Braz. Chem. Soc 12, 273–324.
  • Westrip, S. P. (2010). J. Appl. Cryst.43 Submitted.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography