PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1272.
Published online 2010 May 8. doi:  10.1107/S1600536810015825
PMCID: PMC2979506

4-Methoxy­benzene­carbothio­amide

Abstract

The asymmetric unit of the title compound, C8H9NOS, contains two independent mol­ecules with the meth­oxy groups oriented in opposite conformations. The mean planes of the carbothio­amide groups are tilted by 7.88 (15) and 11.16 (9)° from the mean planes of the benzene rings. In the crystal, the mol­ecules form dimers via intermolecular N—H(...)S inter­molecular hydrogen bonds, resulting in eight-membered rings of R 2 2(8) graph-set motif. The dimers are further linked by C—H(...)O hydrogen bonds into chains along the c axis. Adjacent chains inter­act through inter­molecular N—H(...)S hydrogen bonds, generating eight-membered rings of R 4 2(8) graph-set motif.

Related literature

For the synthesis, biological activity and applications of thio­amides, see: Zahid et al. (2009 [triangle]); Klimesova et al. (1999 [triangle]); Jagodzinski (2003 [triangle]); Lebana et al. (2008 [triangle]). For related structures, see: Khan et al. (2009a [triangle],b [triangle],c [triangle]); Jian et al. (2006 [triangle]). For graph-set notation, see: Bernstein et al. (1994 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1272-scheme1.jpg

Experimental

Crystal data

  • C8H9NOS
  • M r = 167.22
  • Orthorhombic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1272-efi1.jpg
  • a = 5.6545 (2) Å
  • b = 7.3966 (2) Å
  • c = 38.7497 (13) Å
  • V = 1620.67 (9) Å3
  • Z = 8
  • Mo Kα radiation
  • μ = 0.34 mm−1
  • T = 173 K
  • 0.12 × 0.10 × 0.08 mm

Data collection

  • Nonius KappaCCD diffractometer
  • Absorption correction: multi-scan (SORTAV; Blessing, 1997 [triangle]) T min = 0.961, T max = 0.974
  • 6598 measured reflections
  • 3656 independent reflections
  • 3500 reflections with I > 2σ(I)
  • R int = 0.025

Refinement

  • R[F 2 > 2σ(F 2)] = 0.033
  • wR(F 2) = 0.078
  • S = 1.09
  • 3656 reflections
  • 213 parameters
  • H atoms treated by a mixture of independent and constrained refinement
  • Δρmax = 0.22 e Å−3
  • Δρmin = −0.27 e Å−3
  • Absolute structure: Flack (1983 [triangle]), 1469 Friedel pairs
  • Flack parameter: 0.03 (7)

Data collection: COLLECT (Hooft, 1998 [triangle]); cell refinement: DENZO (Otwinowski & Minor, 1997 [triangle]); data reduction: SCALEPACK (Otwinowski & Minor, 1997 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997 [triangle]); software used to prepare material for publication: SHELXL97.

Table 1
Hydrogen-bond geometry (Å, °)

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810015825/rz2437sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810015825/rz2437Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Comment

Thioamides exhibit a wide range of applications, not only as synthetic intermediates in the synthesis of a variety of heterocyclic compounds (Zahid et al., 2009), but also numerous biological activities have been associated with them (Jagodzinski, 2003; Klimesova et al., 1999). Moreover, thioamides are important ligands in the field of coordination chemistry (Lebana et al., 2008). In continuation to our work on thioamides (Khan et al., 2009a; 2009b; 2009c), we have synthesized 4-methoxybenzothioamide. In this article we report the crystal structure of the title compound.

The title structure contains two conformational isomers, molecule A and B, containing atoms S1 and S11, respectively, in an asymmetric unit with methoxy groups oriented in opposite conformations (Fig. 1). The mean-planes of the carbothioamide groups (S/N/C) are tilted by 7.88 (15) and 11.16 (9)° from the mean-planes of the phenyl rings in molecules A and B, respectively. The dihedral angle between the mean-planes of the phenyl rings of the two molecules is 58.57 (4)°. The molecules A and B form dimers via N—H···S type intermolecular hydrogen bonds resulting in eight membered rings in R22(8) motif (Bernstein et al., 1994). The dimers are further linked by C8—H8B···O11 hydrogen bonds into chains along the c-axis (Fig. 2). The adjacent chains of molecules are held together by N—H···S type intermolecular hydrogen bonds resulting in eight membered rings in R42(8) motif (Fig. 3); details of hydrogen bonding geometry have been provided in Table 1.

The bond distances and angles in both molecules agree with the cortresponding bond distances and angles reported in closely related compounds (Khan et al., 2009a; 2009b; 2009c; Jian et al., 2006).

Experimental

A slurry of magnesium cholride hexahydrate (5.8 mmol) and sodium hydrogen sulphide hydrate (70%, 11.6 mmol) was prepared in dimethylformamide (15 ml). 4-Methoxybenzonitrile (5.8 mmol) was added to the slurry and the reaction mixture was stirred at room temperature for 5 h. The reaction mixture was poured into water (60 ml) and the resulting precipitates were collected by filtration. The product obtained was resuspended in 1 N HCl (30 ml), stirred for another 25 min, the precipitated solid filtered and washed with water. Recrystallization of the product from chloroform afforded the crystals of the title compound suitable for X-ray crystallographic analysis.

Refinement

Though all the H atoms could be distinguished in the difference Fourier map the H-atoms bonded to C-atoms were included at geometrically idealized positions and refined in riding-model approximation with C—H = 0.95 and 0.98 Å for aryl and methyl H-atoms, respectively. The H-atoms bonded to N atoms were allowed to refine. The Uiso(H) were allowed at 1.2/1.5Ueq(N/C). The final difference map was essentially featurless.

Figures

Fig. 1.
The molecular structure of the title compound plotted with displacement ellipsoids at the 50% probability level (Farrugia, 1997). Intermolecular hydrogen bonds have been presented by dashed lines.
Fig. 2.
A unit cell showing intermolecular hydrogen bonds by dashed lines resulting in chains of molecules along the c-axis. The H-atoms not involved in H-bonds have been excluded for clarity.
Fig. 3.
A part of the unit cell showing intermolecular hydrogen bonds of the N—H···S type resulting in eight membered rings generating R22(8) and R42(8) graph-set motifs. The H-atoms not involved in H-bonds have been excluded for ...

Crystal data

C8H9NOSF(000) = 704
Mr = 167.22Dx = 1.371 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 3578 reflections
a = 5.6545 (2) Åθ = 1.0–27.5°
b = 7.3966 (2) ŵ = 0.34 mm1
c = 38.7497 (13) ÅT = 173 K
V = 1620.67 (9) Å3Prism, yellow
Z = 80.12 × 0.10 × 0.08 mm

Data collection

Nonius KappaCCD diffractometer3656 independent reflections
Radiation source: fine-focus sealed tube3500 reflections with I > 2σ(I)
graphiteRint = 0.025
ω and [var phi] scansθmax = 27.5°, θmin = 2.8°
Absorption correction: multi-scan (SORTAV; Blessing, 1997)h = −6→7
Tmin = 0.961, Tmax = 0.974k = −9→9
6598 measured reflectionsl = −50→49

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.078w = 1/[σ2(Fo2) + (0.0226P)2 + 0.7048P] where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
3656 reflectionsΔρmax = 0.22 e Å3
213 parametersΔρmin = −0.27 e Å3
0 restraintsAbsolute structure: Flack (1983), 1469 Friedel pairs
Primary atom site location: structure-invariant direct methodsFlack parameter: 0.03 (7)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
S10.54377 (9)0.80205 (8)0.411169 (12)0.03778 (14)
S110.00254 (9)0.83920 (9)0.329665 (12)0.04206 (15)
O10.3345 (2)1.12722 (19)0.56954 (3)0.0314 (3)
O110.2829 (2)0.8073 (2)0.16293 (3)0.0372 (3)
N10.1172 (3)0.9318 (3)0.41309 (5)0.0384 (4)
H1A−0.015 (5)0.958 (3)0.4224 (6)0.046*
H1B0.109 (4)0.901 (3)0.3904 (7)0.046*
N110.4395 (3)0.7318 (3)0.32528 (4)0.0380 (4)
H11A0.445 (4)0.734 (3)0.3477 (6)0.046*
H11B0.577 (4)0.720 (3)0.3147 (6)0.046*
C10.3167 (3)0.9530 (2)0.46743 (4)0.0215 (3)
C20.5056 (3)0.9037 (2)0.48859 (4)0.0233 (3)
H20.62950.83210.47920.028*
C30.5173 (3)0.9561 (2)0.52284 (4)0.0245 (3)
H30.64810.92110.53670.029*
C40.3364 (3)1.0602 (2)0.53680 (5)0.0247 (4)
C50.1422 (3)1.1069 (2)0.51645 (5)0.0274 (4)
H50.01641.17530.52610.033*
C60.1329 (3)1.0540 (2)0.48245 (5)0.0250 (4)
H6−0.00031.08630.46880.030*
C70.3124 (3)0.9001 (2)0.43058 (5)0.0240 (4)
C80.5271 (4)1.0780 (3)0.59156 (5)0.0432 (5)
H8A0.52970.94640.59450.065*
H8B0.50731.13600.61410.065*
H8C0.67621.11780.58120.065*
C110.2594 (3)0.7796 (2)0.26992 (4)0.0223 (3)
C120.0790 (3)0.8599 (2)0.25047 (5)0.0272 (4)
H12−0.05370.91120.26190.033*
C130.0917 (3)0.8656 (3)0.21488 (5)0.0292 (4)
H13−0.03190.92060.20200.035*
C140.2848 (3)0.7913 (3)0.19784 (5)0.0274 (4)
C150.4646 (3)0.7085 (2)0.21656 (4)0.0286 (4)
H150.59570.65570.20500.034*
C160.4502 (3)0.7039 (2)0.25229 (4)0.0272 (4)
H160.57340.64780.26510.033*
C170.2475 (3)0.7799 (2)0.30819 (5)0.0256 (4)
C180.4835 (5)0.7421 (4)0.14431 (5)0.0517 (6)
H18A0.62670.80170.15290.078*
H18B0.46380.76880.11970.078*
H18C0.49760.61120.14760.078*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0264 (2)0.0619 (3)0.0250 (2)0.0131 (2)−0.00098 (18)−0.0060 (2)
S110.0233 (2)0.0758 (4)0.0271 (2)0.0073 (3)0.00048 (19)−0.0079 (2)
O10.0349 (7)0.0362 (7)0.0229 (6)0.0047 (6)0.0003 (6)−0.0048 (5)
O110.0409 (8)0.0482 (8)0.0225 (6)0.0052 (7)−0.0012 (6)0.0014 (6)
N10.0257 (8)0.0610 (12)0.0286 (9)0.0113 (8)−0.0050 (7)−0.0105 (9)
N110.0262 (8)0.0637 (12)0.0241 (8)0.0107 (8)−0.0027 (7)−0.0031 (8)
C10.0187 (8)0.0204 (7)0.0253 (8)−0.0012 (6)0.0007 (7)0.0025 (7)
C20.0214 (8)0.0221 (8)0.0264 (8)0.0025 (7)0.0018 (7)0.0003 (6)
C30.0248 (9)0.0248 (8)0.0238 (8)0.0023 (7)−0.0044 (7)0.0016 (6)
C40.0275 (9)0.0230 (8)0.0235 (8)−0.0024 (7)0.0023 (7)0.0006 (7)
C50.0270 (9)0.0245 (8)0.0308 (9)0.0033 (7)0.0043 (7)−0.0010 (7)
C60.0202 (8)0.0234 (8)0.0313 (9)0.0024 (7)−0.0003 (7)0.0008 (7)
C70.0203 (8)0.0246 (8)0.0272 (9)−0.0018 (7)−0.0013 (7)0.0023 (7)
C80.0461 (12)0.0573 (13)0.0262 (9)0.0095 (12)−0.0060 (10)−0.0073 (9)
C110.0209 (8)0.0222 (8)0.0238 (8)−0.0023 (7)−0.0013 (6)0.0003 (7)
C120.0220 (8)0.0297 (9)0.0299 (9)0.0009 (7)0.0001 (7)−0.0010 (7)
C130.0263 (9)0.0317 (10)0.0296 (9)0.0044 (8)−0.0062 (7)0.0000 (8)
C140.0327 (9)0.0262 (9)0.0234 (8)−0.0037 (8)−0.0022 (7)0.0001 (7)
C150.0277 (9)0.0307 (9)0.0273 (8)0.0045 (8)0.0019 (7)−0.0024 (7)
C160.0252 (9)0.0291 (9)0.0273 (8)0.0051 (8)−0.0015 (7)0.0002 (7)
C170.0232 (8)0.0273 (9)0.0262 (9)−0.0039 (7)−0.0007 (7)−0.0008 (7)
C180.0535 (14)0.0752 (16)0.0263 (9)0.0138 (14)0.0077 (10)−0.0003 (10)

Geometric parameters (Å, °)

S1—C71.6744 (19)C5—C61.376 (3)
S11—C171.6742 (18)C5—H50.9500
O1—C41.362 (2)C6—H60.9500
O1—C81.431 (2)C8—H8A0.9800
O11—C141.358 (2)C8—H8B0.9800
O11—C181.428 (3)C8—H8C0.9800
N1—C71.316 (2)C11—C161.394 (2)
N1—H1A0.85 (3)C11—C121.401 (2)
N1—H1B0.91 (2)C11—C171.484 (2)
N11—C171.321 (2)C12—C131.381 (2)
N11—H11A0.87 (2)C12—H120.9500
N11—H11B0.88 (3)C13—C141.389 (3)
C1—C21.395 (2)C13—H130.9500
C1—C61.406 (2)C14—C151.391 (2)
C1—C71.481 (2)C15—C161.387 (2)
C2—C31.384 (2)C15—H150.9500
C2—H20.9500C16—H160.9500
C3—C41.390 (2)C18—H18A0.9800
C3—H30.9500C18—H18B0.9800
C4—C51.395 (3)C18—H18C0.9800
C4—O1—C8117.17 (15)H8A—C8—H8B109.5
C14—O11—C18117.87 (16)O1—C8—H8C109.5
C7—N1—H1A124.0 (16)H8A—C8—H8C109.5
C7—N1—H1B119.9 (16)H8B—C8—H8C109.5
H1A—N1—H1B115 (2)C16—C11—C12118.03 (16)
C17—N11—H11A121.8 (16)C16—C11—C17121.70 (16)
C17—N11—H11B121.3 (15)C12—C11—C17120.25 (16)
H11A—N11—H11B116 (2)C13—C12—C11120.82 (17)
C2—C1—C6117.49 (16)C13—C12—H12119.6
C2—C1—C7120.67 (16)C11—C12—H12119.6
C6—C1—C7121.84 (16)C12—C13—C14120.21 (17)
C3—C2—C1121.81 (16)C12—C13—H13119.9
C3—C2—H2119.1C14—C13—H13119.9
C1—C2—H2119.1O11—C14—C13115.64 (16)
C2—C3—C4119.53 (17)O11—C14—C15124.33 (17)
C2—C3—H3120.2C13—C14—C15120.04 (16)
C4—C3—H3120.2C16—C15—C14119.24 (17)
O1—C4—C3124.76 (17)C16—C15—H15120.4
O1—C4—C5115.45 (16)C14—C15—H15120.4
C3—C4—C5119.77 (16)C15—C16—C11121.65 (17)
C6—C5—C4120.07 (17)C15—C16—H16119.2
C6—C5—H5120.0C11—C16—H16119.2
C4—C5—H5120.0N11—C17—C11117.58 (16)
C5—C6—C1121.29 (17)N11—C17—S11120.10 (14)
C5—C6—H6119.4C11—C17—S11122.32 (13)
C1—C6—H6119.4O11—C18—H18A109.5
N1—C7—C1117.58 (17)O11—C18—H18B109.5
N1—C7—S1120.09 (15)H18A—C18—H18B109.5
C1—C7—S1122.33 (13)O11—C18—H18C109.5
O1—C8—H8A109.5H18A—C18—H18C109.5
O1—C8—H8B109.5H18B—C18—H18C109.5
C6—C1—C2—C3−2.0 (3)C16—C11—C12—C13−0.7 (3)
C7—C1—C2—C3178.01 (16)C17—C11—C12—C13177.91 (17)
C1—C2—C3—C40.2 (3)C11—C12—C13—C140.0 (3)
C8—O1—C4—C3−3.6 (3)C18—O11—C14—C13176.58 (19)
C8—O1—C4—C5178.21 (18)C18—O11—C14—C15−3.0 (3)
C2—C3—C4—O1−176.50 (17)C12—C13—C14—O11−178.65 (17)
C2—C3—C4—C51.6 (3)C12—C13—C14—C150.9 (3)
O1—C4—C5—C6176.62 (16)O11—C14—C15—C16178.48 (18)
C3—C4—C5—C6−1.7 (3)C13—C14—C15—C16−1.0 (3)
C4—C5—C6—C1−0.1 (3)C14—C15—C16—C110.3 (3)
C2—C1—C6—C51.9 (3)C12—C11—C16—C150.6 (3)
C7—C1—C6—C5−178.06 (17)C17—C11—C16—C15−178.02 (17)
C2—C1—C7—N1172.04 (18)C16—C11—C17—N1110.3 (3)
C6—C1—C7—N1−8.0 (3)C12—C11—C17—N11−168.26 (18)
C2—C1—C7—S1−7.6 (2)C16—C11—C17—S11−169.92 (14)
C6—C1—C7—S1172.40 (14)C12—C11—C17—S1111.5 (2)

Hydrogen-bond geometry (Å, °)

D—H···AD—HH···AD···AD—H···A
N1—H1A···S1i0.85 (3)2.79 (3)3.383 (2)129 (2)
N11—H11B···S11ii0.88 (3)2.63 (2)3.286 (2)132 (2)
C8—H8B···O11iii0.982.543.382 (3)144
N1—H1B···S110.91 (2)2.47 (3)3.368 (2)168 (2)
N11—H11A···S10.87 (2)2.57 (2)3.420 (2)165 (2)
C2—H2···S10.952.693.100 (2)107
C12—H12···S110.952.703.103 (2)106

Symmetry codes: (i) x−1, y, z; (ii) x+1, y, z; (iii) −x+1/2, −y+2, z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2437).

References

  • Bernstein, J., Etter, M. C. & Leiserowitz, L. (1994). Structure Correlation, Vol. 2, edited by H.-B. Bürgi & J. D. Dunitz, pp. 431–507. New York: VCH.
  • Blessing, R. H. (1997). J. Appl. Cryst.30, 421–426.
  • Farrugia, L. J. (1997). J. Appl. Cryst.30, 565.
  • Flack, H. D. (1983). Acta Cryst. A39, 876–881.
  • Hooft, R. (1998). COLLECT Nonius BV, Delft, The Netherlands.
  • Jagodzinski, T. S. (2003). Chem. Rev.103, 197–227. [PubMed]
  • Jian, F. F., Zaho, P., Zang, L. & Zheng, J. (2006). J. Fluorine Chem.127, 63–67.
  • Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009a). Acta Cryst. E65, o1128. [PMC free article] [PubMed]
  • Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009b). Acta Cryst. E65, o1333. [PMC free article] [PubMed]
  • Khan, M.-H., Hameed, S., Akhtar, T. & Masuda, J. D. (2009c). Acta Cryst. E65, o1446. [PMC free article] [PubMed]
  • Klimesova, V., Svoboda, M., Waisser, K. K., Kaustova, J., Buchta, V. & Králova, K. (1999). Eur. J. Med. Chem.34, 433–440.
  • Lebana, S. T., Sultana, R. & Hendal, G. (2008). Polyhedron, 27, 1008–1016.
  • Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Zahid, M., Yasin, K. A., Akhtar, T., Rama, N. H., Hameed, S., Al Masoudi, N. A., Loddo, R. & La Colla, P. (2009). Arkivoc, xi, 85–93.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography