PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1322–o1323.
Published online 2010 May 12. doi:  10.1107/S1600536810016375
PMCID: PMC2979505

Bis[4-(diphenyl­methyl­eneamino)phen­yl]methanone

Abstract

The title mol­ecule, C39H28N2O, is a well known dendron used in the synthesis of phenyl­azomethine dendrimers. The central benzophenone core is twisted, as expected, due to hindrance between H atoms: the dihedral angle between core benzene rings is 54.49 (5)°, identical to that of the stable polymorph of benzophenone (56°). For the same reason, phenyl groups substituting imine C atoms make a large dihedral angle, although similar for each imine: 71.83 (6) and 67.64 (5)°. The six aromatic rings in the mol­ecule thus seem to be quite randomly oriented, and such an arrangement is not favorable for efficient stacking inter­actions in the crystal. The same behaviour is observed in the vast majority of diphenyl­imino-containing organics. The low triclinic crystal symmetry may be a consequence of these features.

Related literature

For the use of the title mol­ecule in the synthesis of dendritic systems, see: Higuchi et al. (2001 [triangle]); Takanashi et al. (2004 [triangle]); Yamamoto & Higuchi (2004 [triangle]). For the structure of benzophenone, see: Fleischer et al. (1968 [triangle]); Kutzke et al. (2000 [triangle]). For related structures including the diphenyl­imino fragment, see: Appel et al. (1985 [triangle]); Buhmann et al. (1993 [triangle]). For geometrical analysis using the Cambridge Structural Database, see: Bruno et al. (2002 [triangle]).

An external file that holds a picture, illustration, etc.
Object name is e-66-o1322-scheme1.jpg

Experimental

Crystal data

  • C39H28N2O
  • M r = 540.63
  • Triclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1322-efi1.jpg
  • a = 11.1723 (10) Å
  • b = 11.3487 (13) Å
  • c = 13.2331 (15) Å
  • α = 103.121 (9)°
  • β = 105.170 (8)°
  • γ = 108.746 (8)°
  • V = 1441.9 (3) Å3
  • Z = 2
  • Mo Kα radiation
  • μ = 0.08 mm−1
  • T = 296 K
  • 0.55 × 0.28 × 0.24 mm

Data collection

  • Bruker P4 diffractometer
  • 6892 measured reflections
  • 5865 independent reflections
  • 4471 reflections with I > 2σ(I)
  • R int = 0.018
  • 3 standard reflections every 97 reflections intensity decay: 1%

Refinement

  • R[F 2 > 2σ(F 2)] = 0.042
  • wR(F 2) = 0.113
  • S = 1.03
  • 5865 reflections
  • 380 parameters
  • H-atom parameters constrained
  • Δρmax = 0.19 e Å−3
  • Δρmin = −0.14 e Å−3

Data collection: XSCANS (Siemens, 1996 [triangle]); cell refinement: XSCANS; data reduction: XSCANS; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: Mercury (Macrae et al., 2008 [triangle]); software used to prepare material for publication: SHELXL97 .

Supplementary Material

Crystal structure: contains datablocks I, global. DOI: 10.1107/S1600536810016375/fl2303sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016375/fl2303Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

Partial support from VIEP-UAP (GUPJ-NAT08-G) is acknowledged.

supplementary crystallographic information

Comment

The title benzophenone derivative has been widely employed as a dendron in the synthesis of phenylazomethine dendrimers (DPAs), mostly in the group of Yamamoto at the Keio University (Higuchi et al., 2001; Takanashi et al., 2004; Yamamoto & Higuchi, 2004). This group and others reported on the preparation of a vast array of supramolecular entities with interesting properties. We became interested in preparing this dendron by using microwave heating, given that it is becoming an important method in laboratories worldwide: it is an environment-friendly technique for the efficient syntheses of organic molecules. The main advantages of microwave-assisted organic synthesis are shorter reaction times, minimum waste and generally higher yields, operational simplicity as well as reduction of thermal degradative byproducts along with cleaner work-up. As expected, better yields were obtained and we realized that, surprisingly, the crystal structure had not been reported so far.

The molecule (Fig. 1) crystallizes in the low symmetry space group P1. The imine bond lengths, 1.2813 (18) and 1.2784 (19) Å, are as expected, however, N atoms significantly deviate from trigonality. Large C═N—C angles are observed, 127.61 (12) and 123.09 (13)°, probably because of the steric repulsion between the central benzophenone benzene rings and the diphenylmethylene groups. The central benzophenone displays a twisted conformation, the dihedral angle between benzene rings being 54.49 (5)°. This value is indeed close to that reported for benzophenone, 56° (orthorhombic phase, Fleischer et al., 1968) or 64° (metastable monoclinic phase, Kutzke et al., 2000). This conformation avoids any intramolecular H···H contacts. In the same way, diphenyl groups bonded to imine C atoms are twisted, by 71.83 (6)° (diphenyl group at C9) and 67.64 (5)° (diphenyl group at C29). These angles are common for diphenylimino-containing organics (range of angles retrieved from the CSD : 57 to 90°; CSD, version 5.31 with all updates; Bruno et al., 2002).

As a whole, the six rings in the molecule seem to be randomly oriented. This chaotic arrangement is consistent with the low crystal symmetry, and does not favor π···π or C—H···π interactions in the crystal structure. For example, the shortest intermolecular separation between centroids of two rings is 4.45 Å. The calculated packing index is indeed low for this polyphenyl molecule, 0.672. A search in the CSD for organic molecules containing the Ph2C═N fragment shows that more densely packed crystals in this class of compounds are scarce. For 151 hits, only two structures present symmetry-related diphenylimino groups with phenyl rings separated by less than 3.9 Å (Appel et al., 1985; Buhmann et al., 1993).

Experimental

A modified procedure for improved synthesis of the title compound was used. The Higuchi's route (Higuchi et al., 2001; see compound 'dendron G2' in this paper) consists of the condensation between benzophenone and 4,4'-diaminobenzophenone in presence of DABCO (1,4-diazabicyclo[2.2.2]octane) and TiCl4, in chlorobenzene. In the original synthesis, the mixture was heated at 398 K for 24 h to afford dendron G2 in 48% yield. In place of thermal activation, we performed a microwave-assisted synthesis in a monomode MIC-1 oven (Tekno-lab, S.A.) with maximum power output of 600 W. Irradiation was applied for 20 min., affording the title compound with an enhanced yield of 65% after silica gel column chromatography (ethyl acetate:hexane = 1:5). Single crystals were obtained by slow evaporation of the eluate at 298 K.

Refinement

All H atoms were placed in idealized positions and refined as riding to their carrier C atoms, with bond lengths fixed to 0.93 Å. Isotropic displacement parameters were calculated as Uiso(H) = 1.2Ueq(carrier C atom).

Figures

Fig. 1.
Molecular structure of the title compound, with 50% probability level displacement ellipsoids for non-H atoms.

Crystal data

C39H28N2OZ = 2
Mr = 540.63F(000) = 568
Triclinic, P1Dx = 1.245 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.1723 (10) ÅCell parameters from 82 reflections
b = 11.3487 (13) Åθ = 4.6–12.5°
c = 13.2331 (15) ŵ = 0.08 mm1
α = 103.121 (9)°T = 296 K
β = 105.170 (8)°Prism, yellow
γ = 108.746 (8)°0.55 × 0.28 × 0.24 mm
V = 1441.9 (3) Å3

Data collection

Bruker P4 diffractometerRint = 0.018
Radiation source: fine-focus sealed tubeθmax = 26.4°, θmin = 2.0°
graphiteh = −13→2
2θ/ω scansk = −13→13
6892 measured reflectionsl = −16→16
5865 independent reflections3 standard reflections every 97 reflections
4471 reflections with I > 2σ(I) intensity decay: 1%

Refinement

Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.042H-atom parameters constrained
wR(F2) = 0.113w = 1/[σ2(Fo2) + (0.0461P)2 + 0.275P] where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max < 0.001
5865 reflectionsΔρmax = 0.19 e Å3
380 parametersΔρmin = −0.14 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
0 constraintsExtinction coefficient: 0.0198 (18)
Primary atom site location: structure-invariant direct methods

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/Ueq
C10.81457 (15)0.23158 (15)0.66331 (12)0.0425 (3)
O10.92972 (12)0.26828 (14)0.66240 (11)0.0658 (4)
C20.70743 (14)0.24601 (14)0.57791 (12)0.0383 (3)
C30.72166 (15)0.24315 (15)0.47594 (12)0.0425 (3)
H3A0.79020.22240.45990.051*
C40.63532 (15)0.27069 (15)0.39873 (12)0.0407 (3)
H4A0.64590.26730.33090.049*
C50.53212 (14)0.30355 (13)0.42020 (11)0.0373 (3)
C60.51690 (15)0.30587 (15)0.52197 (12)0.0424 (3)
H6A0.44860.32700.53810.051*
C70.60322 (15)0.27683 (15)0.59917 (12)0.0416 (3)
H7A0.59140.27790.66630.050*
N80.46589 (12)0.34758 (12)0.33981 (10)0.0419 (3)
C90.34487 (14)0.34189 (13)0.31471 (11)0.0374 (3)
C100.30371 (14)0.40362 (14)0.23057 (12)0.0395 (3)
C110.39664 (17)0.46820 (17)0.18792 (13)0.0505 (4)
H11A0.48340.46960.20980.061*
C120.3613 (2)0.5302 (2)0.11344 (15)0.0614 (5)
H12A0.42450.57320.08580.074*
C130.23276 (19)0.52870 (18)0.07989 (14)0.0585 (4)
H13A0.20940.57120.03040.070*
C140.14043 (18)0.46438 (19)0.11986 (15)0.0614 (5)
H14A0.05340.46220.09680.074*
C150.17516 (16)0.40203 (17)0.19474 (14)0.0536 (4)
H15A0.11090.35850.22120.064*
C160.24182 (14)0.27839 (14)0.36114 (11)0.0372 (3)
C170.20701 (16)0.35573 (16)0.43619 (13)0.0473 (4)
H17A0.24580.44740.45640.057*
C180.11442 (17)0.29636 (18)0.48108 (13)0.0529 (4)
H18A0.09250.34850.53210.064*
C190.05504 (17)0.16072 (18)0.45026 (14)0.0547 (4)
H19A−0.00650.12140.48080.066*
C200.08672 (18)0.08337 (17)0.37436 (16)0.0575 (4)
H20A0.0454−0.00830.35270.069*
C210.18011 (16)0.14185 (15)0.33012 (14)0.0477 (4)
H21A0.20150.08900.27920.057*
C220.78337 (15)0.17280 (14)0.74811 (12)0.0404 (3)
C230.89013 (16)0.20074 (16)0.84510 (13)0.0475 (4)
H23A0.97650.26090.85780.057*
C240.87042 (17)0.14101 (16)0.92269 (13)0.0513 (4)
H24A0.94280.16210.98750.062*
C250.74229 (16)0.04910 (14)0.90414 (12)0.0436 (3)
C260.63567 (16)0.02012 (16)0.80788 (13)0.0465 (4)
H26A0.5500−0.04200.79440.056*
C270.65529 (16)0.08267 (15)0.73147 (12)0.0448 (3)
H27A0.58200.06420.66830.054*
N280.72437 (15)−0.02708 (13)0.97419 (11)0.0495 (3)
C290.73136 (14)0.02098 (14)1.07383 (12)0.0391 (3)
C300.72464 (14)−0.06736 (14)1.14219 (12)0.0409 (3)
C310.7430 (2)−0.18335 (17)1.10693 (15)0.0584 (4)
H31A0.7576−0.20601.04050.070*
C320.7397 (2)−0.2648 (2)1.17030 (18)0.0717 (6)
H32A0.7527−0.34191.14650.086*
C330.7174 (2)−0.23299 (19)1.26838 (16)0.0657 (5)
H33A0.7156−0.28831.31070.079*
C340.69800 (19)−0.11972 (19)1.30364 (15)0.0598 (5)
H34A0.6823−0.09851.36970.072*
C350.70164 (16)−0.03645 (16)1.24098 (13)0.0487 (4)
H35A0.68860.04041.26540.058*
C360.74461 (14)0.15897 (14)1.12429 (12)0.0386 (3)
C370.85587 (15)0.24739 (15)1.21870 (13)0.0452 (3)
H37A0.91950.21891.25340.054*
C380.8732 (2)0.37737 (17)1.26174 (15)0.0577 (4)
H38A0.94990.43671.32320.069*
C390.7766 (2)0.41837 (19)1.21333 (17)0.0657 (5)
H39A0.78790.50561.24230.079*
C400.6634 (2)0.3310 (2)1.12217 (16)0.0655 (5)
H40A0.59730.35881.09110.079*
C410.64726 (18)0.20148 (18)1.07617 (14)0.0513 (4)
H41A0.57160.14341.01340.062*

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
C10.0422 (8)0.0497 (9)0.0425 (8)0.0226 (7)0.0182 (6)0.0192 (7)
O10.0458 (7)0.1042 (10)0.0667 (8)0.0347 (7)0.0264 (6)0.0504 (8)
C20.0402 (7)0.0395 (7)0.0392 (7)0.0174 (6)0.0164 (6)0.0164 (6)
C30.0430 (8)0.0527 (9)0.0414 (8)0.0253 (7)0.0209 (7)0.0179 (7)
C40.0414 (8)0.0510 (8)0.0347 (7)0.0192 (7)0.0181 (6)0.0177 (6)
C50.0350 (7)0.0376 (7)0.0397 (7)0.0130 (6)0.0138 (6)0.0161 (6)
C60.0424 (8)0.0517 (8)0.0437 (8)0.0243 (7)0.0220 (7)0.0200 (7)
C70.0468 (8)0.0499 (8)0.0364 (7)0.0229 (7)0.0201 (6)0.0186 (6)
N80.0394 (7)0.0496 (7)0.0434 (7)0.0193 (6)0.0172 (5)0.0232 (6)
C90.0381 (7)0.0367 (7)0.0374 (7)0.0149 (6)0.0144 (6)0.0123 (6)
C100.0392 (8)0.0399 (8)0.0383 (7)0.0154 (6)0.0130 (6)0.0137 (6)
C110.0499 (9)0.0678 (11)0.0520 (9)0.0316 (8)0.0268 (8)0.0320 (8)
C120.0657 (11)0.0802 (13)0.0621 (11)0.0352 (10)0.0355 (9)0.0438 (10)
C130.0653 (11)0.0697 (11)0.0510 (9)0.0329 (9)0.0185 (8)0.0343 (9)
C140.0475 (9)0.0747 (12)0.0651 (11)0.0275 (9)0.0112 (8)0.0360 (10)
C150.0381 (8)0.0637 (10)0.0615 (10)0.0174 (8)0.0157 (7)0.0329 (9)
C160.0337 (7)0.0412 (7)0.0382 (7)0.0161 (6)0.0121 (6)0.0160 (6)
C170.0423 (8)0.0450 (8)0.0481 (8)0.0151 (7)0.0154 (7)0.0089 (7)
C180.0487 (9)0.0704 (11)0.0422 (8)0.0269 (8)0.0210 (7)0.0142 (8)
C190.0466 (9)0.0738 (12)0.0572 (10)0.0240 (8)0.0268 (8)0.0376 (9)
C200.0563 (10)0.0488 (9)0.0772 (12)0.0199 (8)0.0311 (9)0.0328 (9)
C210.0514 (9)0.0426 (8)0.0591 (9)0.0223 (7)0.0282 (8)0.0205 (7)
C220.0453 (8)0.0446 (8)0.0380 (7)0.0234 (7)0.0167 (6)0.0168 (6)
C230.0447 (8)0.0502 (9)0.0439 (8)0.0159 (7)0.0120 (7)0.0189 (7)
C240.0524 (9)0.0550 (9)0.0376 (8)0.0181 (8)0.0059 (7)0.0176 (7)
C250.0571 (9)0.0407 (8)0.0372 (7)0.0219 (7)0.0195 (7)0.0147 (6)
C260.0461 (8)0.0487 (9)0.0441 (8)0.0167 (7)0.0170 (7)0.0176 (7)
C270.0437 (8)0.0519 (9)0.0389 (7)0.0208 (7)0.0119 (6)0.0173 (7)
N280.0639 (9)0.0438 (7)0.0414 (7)0.0212 (6)0.0180 (6)0.0181 (6)
C290.0350 (7)0.0417 (8)0.0405 (8)0.0147 (6)0.0114 (6)0.0180 (6)
C300.0374 (7)0.0428 (8)0.0423 (8)0.0152 (6)0.0111 (6)0.0194 (6)
C310.0796 (12)0.0550 (10)0.0570 (10)0.0361 (9)0.0311 (9)0.0284 (8)
C320.0982 (16)0.0598 (11)0.0783 (13)0.0440 (11)0.0347 (12)0.0407 (10)
C330.0734 (12)0.0606 (11)0.0667 (12)0.0231 (10)0.0186 (10)0.0418 (10)
C340.0614 (11)0.0696 (12)0.0512 (9)0.0185 (9)0.0243 (8)0.0328 (9)
C350.0497 (9)0.0516 (9)0.0509 (9)0.0203 (7)0.0217 (7)0.0246 (7)
C360.0397 (7)0.0448 (8)0.0427 (7)0.0204 (6)0.0213 (6)0.0230 (6)
C370.0415 (8)0.0470 (8)0.0523 (9)0.0195 (7)0.0203 (7)0.0201 (7)
C380.0665 (11)0.0458 (9)0.0624 (10)0.0193 (8)0.0317 (9)0.0165 (8)
C390.1079 (16)0.0549 (10)0.0672 (12)0.0482 (11)0.0528 (12)0.0327 (9)
C400.0996 (15)0.0870 (14)0.0656 (12)0.0726 (13)0.0506 (12)0.0506 (11)
C410.0556 (10)0.0696 (11)0.0486 (9)0.0373 (9)0.0239 (8)0.0322 (8)

Geometric parameters (Å, °)

C1—O11.2225 (18)C21—H21A0.9300
C1—C221.490 (2)C22—C271.391 (2)
C1—C21.496 (2)C22—C231.393 (2)
C2—C71.395 (2)C23—C241.379 (2)
C2—C31.394 (2)C23—H23A0.9300
C3—C41.377 (2)C24—C251.392 (2)
C3—H3A0.9300C24—H24A0.9300
C4—C51.396 (2)C25—C261.383 (2)
C4—H4A0.9300C25—N281.4130 (19)
C5—C61.3964 (19)C26—C271.384 (2)
C5—N81.4127 (18)C26—H26A0.9300
C6—C71.387 (2)C27—H27A0.9300
C6—H6A0.9300N28—C291.2784 (19)
C7—H7A0.9300C29—C301.4926 (19)
N8—C91.2813 (18)C29—C361.498 (2)
C9—C101.4950 (19)C30—C351.387 (2)
C9—C161.5033 (19)C30—C311.392 (2)
C10—C151.382 (2)C31—C321.380 (2)
C10—C111.393 (2)C31—H31A0.9300
C11—C121.383 (2)C32—C331.375 (3)
C11—H11A0.9300C32—H32A0.9300
C12—C131.381 (3)C33—C341.370 (3)
C12—H12A0.9300C33—H33A0.9300
C13—C141.361 (2)C34—C351.390 (2)
C13—H13A0.9300C34—H34A0.9300
C14—C151.388 (2)C35—H35A0.9300
C14—H14A0.9300C36—C371.389 (2)
C15—H15A0.9300C36—C411.391 (2)
C16—C211.386 (2)C37—C381.384 (2)
C16—C171.391 (2)C37—H37A0.9300
C17—C181.390 (2)C38—C391.373 (3)
C17—H17A0.9300C38—H38A0.9300
C18—C191.376 (2)C39—C401.375 (3)
C18—H18A0.9300C39—H39A0.9300
C19—C201.375 (2)C40—C411.389 (3)
C19—H19A0.9300C40—H40A0.9300
C20—C211.387 (2)C41—H41A0.9300
C20—H20A0.9300
O1—C1—C22119.75 (13)C20—C21—H21A119.7
O1—C1—C2118.82 (13)C27—C22—C23118.10 (13)
C22—C1—C2121.43 (13)C27—C22—C1123.37 (13)
C7—C2—C3118.23 (13)C23—C22—C1118.30 (14)
C7—C2—C1123.51 (13)C24—C23—C22121.35 (15)
C3—C2—C1117.86 (13)C24—C23—H23A119.3
C4—C3—C2120.68 (13)C22—C23—H23A119.3
C4—C3—H3A119.7C23—C24—C25120.03 (14)
C2—C3—H3A119.7C23—C24—H24A120.0
C3—C4—C5121.35 (13)C25—C24—H24A120.0
C3—C4—H4A119.3C26—C25—C24119.11 (14)
C5—C4—H4A119.3C26—C25—N28119.71 (14)
C4—C5—C6118.22 (13)C24—C25—N28120.61 (14)
C4—C5—N8114.03 (12)C25—C26—C27120.64 (15)
C6—C5—N8127.22 (13)C25—C26—H26A119.7
C7—C6—C5120.31 (13)C27—C26—H26A119.7
C7—C6—H6A119.8C26—C27—C22120.73 (14)
C5—C6—H6A119.8C26—C27—H27A119.6
C6—C7—C2121.20 (13)C22—C27—H27A119.6
C6—C7—H7A119.4C29—N28—C25123.09 (13)
C2—C7—H7A119.4N28—C29—C30117.26 (13)
C9—N8—C5127.61 (12)N28—C29—C36123.77 (13)
N8—C9—C10116.13 (13)C30—C29—C36118.97 (12)
N8—C9—C16126.07 (13)C35—C30—C31118.81 (14)
C10—C9—C16117.80 (12)C35—C30—C29121.70 (14)
C15—C10—C11117.84 (14)C31—C30—C29119.49 (14)
C15—C10—C9121.89 (13)C32—C31—C30120.19 (17)
C11—C10—C9120.25 (13)C32—C31—H31A119.9
C12—C11—C10120.72 (15)C30—C31—H31A119.9
C12—C11—H11A119.6C33—C32—C31120.56 (18)
C10—C11—H11A119.6C33—C32—H32A119.7
C13—C12—C11120.39 (16)C31—C32—H32A119.7
C13—C12—H12A119.8C34—C33—C32119.89 (16)
C11—C12—H12A119.8C34—C33—H33A120.1
C14—C13—C12119.44 (15)C32—C33—H33A120.1
C14—C13—H13A120.3C33—C34—C35120.21 (17)
C12—C13—H13A120.3C33—C34—H34A119.9
C13—C14—C15120.52 (16)C35—C34—H34A119.9
C13—C14—H14A119.7C30—C35—C34120.34 (16)
C15—C14—H14A119.7C30—C35—H35A119.8
C10—C15—C14121.07 (15)C34—C35—H35A119.8
C10—C15—H15A119.5C37—C36—C41118.92 (14)
C14—C15—H15A119.5C37—C36—C29120.45 (13)
C21—C16—C17118.85 (14)C41—C36—C29120.62 (14)
C21—C16—C9120.62 (13)C38—C37—C36120.79 (15)
C17—C16—C9120.53 (13)C38—C37—H37A119.6
C16—C17—C18120.17 (15)C36—C37—H37A119.6
C16—C17—H17A119.9C39—C38—C37119.74 (18)
C18—C17—H17A119.9C39—C38—H38A120.1
C19—C18—C17120.25 (15)C37—C38—H38A120.1
C19—C18—H18A119.9C38—C39—C40120.28 (17)
C17—C18—H18A119.9C38—C39—H39A119.9
C20—C19—C18119.98 (15)C40—C39—H39A119.9
C20—C19—H19A120.0C39—C40—C41120.41 (17)
C18—C19—H19A120.0C39—C40—H40A119.8
C19—C20—C21120.12 (16)C41—C40—H40A119.8
C19—C20—H20A119.9C40—C41—C36119.79 (17)
C21—C20—H20A119.9C40—C41—H41A120.1
C16—C21—C20120.60 (15)C36—C41—H41A120.1
C16—C21—H21A119.7
O1—C1—C2—C7−144.52 (16)O1—C1—C22—C27−152.96 (16)
C22—C1—C2—C736.0 (2)C2—C1—C22—C2726.6 (2)
O1—C1—C2—C328.0 (2)O1—C1—C22—C2321.4 (2)
C22—C1—C2—C3−151.51 (14)C2—C1—C22—C23−159.09 (14)
C7—C2—C3—C40.3 (2)C27—C22—C23—C240.2 (2)
C1—C2—C3—C4−172.64 (14)C1—C22—C23—C24−174.49 (14)
C2—C3—C4—C50.7 (2)C22—C23—C24—C251.0 (3)
C3—C4—C5—C6−1.0 (2)C23—C24—C25—C26−0.7 (2)
C3—C4—C5—N8171.19 (13)C23—C24—C25—N28170.63 (14)
C4—C5—C6—C70.4 (2)C24—C25—C26—C27−0.8 (2)
N8—C5—C6—C7−170.67 (14)N28—C25—C26—C27−172.23 (14)
C5—C6—C7—C20.6 (2)C25—C26—C27—C222.0 (2)
C3—C2—C7—C6−0.9 (2)C23—C22—C27—C26−1.7 (2)
C1—C2—C7—C6171.58 (14)C1—C22—C27—C26172.67 (14)
C4—C5—N8—C9154.35 (15)C26—C25—N28—C29−115.96 (18)
C6—C5—N8—C9−34.3 (2)C24—C25—N28—C2972.8 (2)
C5—N8—C9—C10176.47 (13)C25—N28—C29—C30−173.82 (14)
C5—N8—C9—C16−4.1 (2)C25—N28—C29—C366.7 (2)
N8—C9—C10—C15178.78 (15)N28—C29—C30—C35−165.71 (15)
C16—C9—C10—C15−0.7 (2)C36—C29—C30—C3513.8 (2)
N8—C9—C10—C11−3.0 (2)N28—C29—C30—C3114.9 (2)
C16—C9—C10—C11177.57 (14)C36—C29—C30—C31−165.62 (15)
C15—C10—C11—C121.0 (2)C35—C30—C31—C32−0.7 (3)
C9—C10—C11—C12−177.38 (15)C29—C30—C31—C32178.75 (17)
C10—C11—C12—C13−0.2 (3)C30—C31—C32—C330.4 (3)
C11—C12—C13—C14−0.7 (3)C31—C32—C33—C340.2 (3)
C12—C13—C14—C150.7 (3)C32—C33—C34—C35−0.4 (3)
C11—C10—C15—C14−0.9 (3)C31—C30—C35—C340.4 (2)
C9—C10—C15—C14177.43 (16)C29—C30—C35—C34−179.01 (15)
C13—C14—C15—C100.0 (3)C33—C34—C35—C300.1 (3)
N8—C9—C16—C21−72.1 (2)N28—C29—C36—C37−120.14 (17)
C10—C9—C16—C21107.31 (16)C30—C29—C36—C3760.38 (18)
N8—C9—C16—C17107.75 (18)N28—C29—C36—C4158.6 (2)
C10—C9—C16—C17−72.83 (18)C30—C29—C36—C41−120.93 (15)
C21—C16—C17—C181.6 (2)C41—C36—C37—C38−2.8 (2)
C9—C16—C17—C18−178.23 (14)C29—C36—C37—C38175.92 (14)
C16—C17—C18—C19−1.0 (2)C36—C37—C38—C392.6 (2)
C17—C18—C19—C20−0.3 (3)C37—C38—C39—C40−0.3 (3)
C18—C19—C20—C211.0 (3)C38—C39—C40—C41−1.8 (3)
C17—C16—C21—C20−0.9 (2)C39—C40—C41—C361.6 (3)
C9—C16—C21—C20178.93 (15)C37—C36—C41—C400.7 (2)
C19—C20—C21—C16−0.4 (3)C29—C36—C41—C40−178.01 (14)

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FL2303).

References

  • Appel, R., Knoch, F. & Zimmermann, R. (1985). Chem. Ber 118, 814–824.
  • Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397. [PubMed]
  • Buhmann, M., Würthwein, E.-U. & Möller, M. H. (1993). Chem. Ber 126, 957–967.
  • Fleischer, E. B., Sung, N. & Hawkinson, S. (1968). J. Phys. Chem 72, 4311–4312.
  • Higuchi, M., Shiki, S., Ariga, K. & Yamamoto, K. (2001). J. Am. Chem. Soc 123, 4414–4420. [PubMed]
  • Kutzke, H., Klapper, H., Hammond, R. B. & Roberts, K. J. (2000). Acta Cryst. B56, 486–496. [PubMed]
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst.41, 466–470.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Siemens (1996). XSCANS Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
  • Takanashi, K., Chiba, H., Higuchi, M. & Yamamoto, K. (2004). Org. Lett 6, 1709–1712. [PubMed]
  • Yamamoto, K. & Higuchi, M. (2004). Pure Appl. Chem 76, 1399–1408.

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography