PMCCPMCCPMCC

Search tips
Search criteria 

Advanced

 
Logo of actaeInternational Union of Crystallographysearchopen accessarticle submissionjournal home pagethis article
 
Acta Crystallogr Sect E Struct Rep Online. 2010 June 1; 66(Pt 6): o1335.
Published online 2010 May 15. doi:  10.1107/S1600536810016946
PMCID: PMC2979504

4,6,7,9,10,12,13,15,16,18-Decahydro-1,3-dithiolo[4,5-l][1,4,7,10,15]trioxadithia­cyclo­hepta­decine-2-thione

Abstract

The title compound, C13H20O3S5, is bis­ected by a crystallographic twofold rotation axis, which relates the two halves of the mol­ecule to one another: one S, one C and one O atom lie on the axis. The thione S atom lies in the plane of the five-membered rings with an r.m.s. deviation of 0.0042 (5) Å. Parts of the 17-membered macrocycle were refined using a two-part disorder model [occupancies of 0.553 (14) and 0.447 (14)]. There are no noteworthy inter­molecular inter­actions.

Related literature

Thia­crown ether annulated 1,3-dithiol-2-thione is a key inter­mediate of the crown ether-bearing redox-active tetra­thia­fulvalene moiety, see: Moore et al. (2000 [triangle]). For details of the synthesis, see: Chen et al. (2005 [triangle]). For a related structure, see: Hou et al. (2009 [triangle])

An external file that holds a picture, illustration, etc.
Object name is e-66-o1335-scheme1.jpg

Experimental

Crystal data

  • C13H20O3S5
  • M r = 384.59
  • Monoclinic, An external file that holds a picture, illustration, etc.
Object name is e-66-o1335-efi1.jpg
  • a = 14.040 (3) Å
  • b = 13.616 (3) Å
  • c = 10.004 (2) Å
  • β = 110.89 (3)°
  • V = 1786.6 (6) Å3
  • Z = 4
  • Mo Kα radiation
  • μ = 0.65 mm−1
  • T = 290 K
  • 0.13 × 0.13 × 0.12 mm

Data collection

  • Rigaku R-AXIS RAPID diffractometer
  • Absorption correction: multi-scan (ABSCOR; Higashi, 1995 [triangle]) T min = 0.920, T max = 0.926
  • 8683 measured reflections
  • 2054 independent reflections
  • 1795 reflections with I > 2σ(I)
  • R int = 0.022

Refinement

  • R[F 2 > 2σ(F 2)] = 0.039
  • wR(F 2) = 0.103
  • S = 1.05
  • 2054 reflections
  • 116 parameters
  • 31 restraints
  • H-atom parameters constrained
  • Δρmax = 0.38 e Å−3
  • Δρmin = −0.40 e Å−3

Data collection: RAPID-AUTO (Rigaku, 1998 [triangle]); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002 [triangle]); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008 [triangle]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008 [triangle]); molecular graphics: PLATON (Spek, 2009 [triangle]); software used to prepare material for publication: SHELXL97.

Supplementary Material

Crystal structure: contains datablocks global, I. DOI: 10.1107/S1600536810016946/nk2030sup1.cif

Structure factors: contains datablocks I. DOI: 10.1107/S1600536810016946/nk2030Isup2.hkl

Additional supplementary materials: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge financial support from the National Natural Science Foundation of China (grant No. 20662010), the Specialized Research Fund for the Doctoral Program of Higher Education (grant No. 2006184001) and the Open Project of the State Key Laboratory of Supra­molecular Structure and Materials, Jilin University.

supplementary crystallographic information

Comment

Thiacrown ether annulated 1,3-dithiol-2-thione has been intensively investigated because it is a key intermediate of the crown ether bearing redox-active tetrathiafulvalene moiety (Moore et al., 2000). Herein, we report the crystal structure of the title compound, (I).

The molecule structure of title compound, C13H20O3S5, is shown in Fig. 1. All bond lengths and angles are unexceptional and comparable with the related structure (Hou et al., 2009). The C6, C7 and C6', C7' atoms were refined using a two-part disorder model with a major:minor occupancy ratio of 55:45.

Experimental

The title compound was prepared according to the literature (Chen et al., 2005). Single crystals suitable for X-ray diffraction were prepared by slow evaperation a mixture of dichloromethane and petroleum (60-90 °C) at room temperature.

Refinement

C-bound H-atoms were placed in calculated positions (C—H 0.97 Å) and were included in the refinement with Uiso(H) = 1.2 Ueq(C). Atoms C6, C7 and C6', C7' were refined using a two-part disorder model with a major:minor occupancy ratio of 55:45. Mild rigid bond restraints were used on the disordered components.

Figures

Fig. 1.
The asymmetric of title compound, with the atom numbering. The disordered C6', C7' and their attached H atoms are omitted for clarity. Displacement ellipsoids of non-H atoms are drawn at the 30% probalility level.

Crystal data

C13H20O3S5F(000) = 808
Mr = 384.59Dx = 1.430 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 7120 reflections
a = 14.040 (3) Åθ = 3.0–27.5°
b = 13.616 (3) ŵ = 0.65 mm1
c = 10.004 (2) ÅT = 290 K
β = 110.89 (3)°Block, yellow
V = 1786.6 (6) Å30.13 × 0.13 × 0.12 mm
Z = 4

Data collection

Rigaku R-AXIS RAPID diffractometer2054 independent reflections
Radiation source: fine-focus sealed tube1795 reflections with I > 2σ(I)
graphiteRint = 0.022
ω scansθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)h = −18→17
Tmin = 0.920, Tmax = 0.926k = −15→17
8683 measured reflectionsl = −12→12

Refinement

Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103H-atom parameters constrained
S = 1.05w = 1/[σ2(Fo2) + (0.0458P)2 + 1.730P] where P = (Fo2 + 2Fc2)/3
2054 reflections(Δ/σ)max < 0.001
116 parametersΔρmax = 0.38 e Å3
31 restraintsΔρmin = −0.40 e Å3

Special details

Experimental. (See detailed section in the paper)
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

xyzUiso*/UeqOcc. (<1)
S10.0000−0.12281 (6)0.25000.0692 (3)
S20.05129 (4)0.06857 (4)0.14909 (6)0.04829 (17)
S30.17462 (5)0.26384 (5)0.11969 (8)0.0693 (2)
O10.17749 (17)0.40044 (19)0.3861 (3)0.1067 (8)
O20.00000.5091 (3)0.25000.1381 (16)
C10.0000−0.0016 (2)0.25000.0456 (6)
C20.02260 (13)0.18371 (13)0.2012 (2)0.0390 (4)
C30.04873 (15)0.27043 (15)0.1292 (2)0.0493 (5)
H3A0.04400.32950.18070.059*
H3B−0.00100.27570.03300.059*
C40.25511 (19)0.2730 (2)0.3037 (4)0.0816 (9)
H4A0.22780.23080.35940.098*
H4B0.32210.24810.31380.098*
C50.2672 (2)0.3743 (2)0.3658 (4)0.0896 (10)
H5A0.32380.37580.45640.108*
H5B0.28130.42050.30130.108*
C60.1737 (6)0.4901 (6)0.4396 (11)0.092 (2)0.553 (14)
H6A0.24090.51990.47530.111*0.553 (14)
H6B0.14730.48680.51690.111*0.553 (14)
C70.1044 (10)0.5461 (6)0.3178 (12)0.099 (3)0.553 (14)
H7A0.10040.61260.35010.118*0.553 (14)
H7B0.13510.54970.24510.118*0.553 (14)
C6'0.1649 (8)0.5194 (7)0.3562 (16)0.083 (3)0.447 (14)
H6'10.21300.55490.43600.100*0.447 (14)
H6'20.17850.53560.27030.100*0.447 (14)
C7'0.0574 (11)0.5476 (8)0.3385 (11)0.092 (3)0.447 (14)
H7'10.04590.53330.42660.110*0.447 (14)
H7'20.04910.61780.32190.110*0.447 (14)

Atomic displacement parameters (Å2)

U11U22U33U12U13U23
S10.0894 (6)0.0347 (4)0.0982 (7)0.0000.0513 (5)0.000
S20.0524 (3)0.0401 (3)0.0612 (3)0.00140 (19)0.0310 (2)−0.0020 (2)
S30.0700 (4)0.0671 (4)0.0918 (5)−0.0035 (3)0.0543 (4)0.0127 (3)
O10.0793 (14)0.1025 (17)0.142 (2)−0.0370 (13)0.0438 (14)−0.0511 (16)
O20.110 (3)0.067 (2)0.225 (5)0.0000.044 (3)0.000
C10.0432 (13)0.0374 (13)0.0576 (15)0.0000.0199 (12)0.000
C20.0321 (8)0.0354 (9)0.0478 (9)−0.0004 (6)0.0123 (7)0.0006 (7)
C30.0459 (10)0.0444 (10)0.0561 (11)−0.0011 (8)0.0165 (9)0.0090 (9)
C40.0423 (12)0.0699 (17)0.122 (2)−0.0026 (11)0.0168 (14)0.0213 (16)
C50.0518 (15)0.086 (2)0.115 (2)−0.0222 (13)0.0109 (15)0.0036 (18)
C60.109 (5)0.077 (4)0.080 (5)−0.023 (3)0.021 (3)−0.014 (3)
C70.112 (5)0.054 (3)0.126 (5)−0.018 (4)0.038 (5)−0.010 (3)
C6'0.092 (5)0.063 (5)0.100 (7)−0.029 (4)0.043 (5)−0.029 (5)
C7'0.108 (7)0.081 (5)0.094 (5)−0.003 (5)0.045 (5)−0.037 (4)

Geometric parameters (Å, °)

S1—C11.650 (3)C3—H3B0.9700
S2—C11.7231 (16)C4—C51.497 (4)
S2—C21.7440 (18)C4—H4A0.9700
S3—C41.788 (3)C4—H4B0.9700
S3—C31.806 (2)C5—H5A0.9700
O1—C61.342 (7)C5—H5B0.9700
O1—C51.391 (4)C6—C71.472 (14)
O1—C6'1.645 (12)C6—H6A0.9700
O2—C7'1.095 (11)C6—H6B0.9700
O2—C7'i1.095 (11)C7—H7A0.9700
O2—C71.467 (11)C7—H7B0.9700
O2—C7i1.467 (11)C6'—C7'1.506 (15)
C1—S2i1.7231 (16)C6'—H6'10.9700
C2—C2i1.340 (4)C6'—H6'20.9700
C2—C31.495 (3)C7'—H7'10.9700
C3—H3A0.9700C7'—H7'20.9700
C1—S2—C297.69 (10)O1—C5—H5B109.9
C4—S3—C3102.32 (13)C4—C5—H5B109.9
C6—O1—C5117.2 (4)H5A—C5—H5B108.3
C6—O1—C6'32.8 (4)O1—C6—C7104.4 (8)
C5—O1—C6'105.6 (4)O1—C6—H6A110.9
C7'—O2—C7'i122.7 (13)C7—C6—H6A110.9
C7'—O2—C730.3 (5)O1—C6—H6B110.9
C7'i—O2—C7122.3 (7)C7—C6—H6B110.9
C7'—O2—C7i122.3 (7)H6A—C6—H6B108.9
C7'i—O2—C7i30.3 (5)O2—C7—C6117.5 (8)
C7—O2—C7i139.8 (8)O2—C7—H7A107.9
S1—C1—S2i123.68 (8)C6—C7—H7A107.9
S1—C1—S2123.68 (8)O2—C7—H7B107.9
S2i—C1—S2112.65 (15)C6—C7—H7B107.9
C2i—C2—C3127.72 (11)H7A—C7—H7B107.2
C2i—C2—S2115.95 (6)C7'—C6'—O1108.1 (8)
C3—C2—S2116.30 (14)C7'—C6'—H6'1110.1
C2—C3—S3113.52 (14)O1—C6'—H6'1110.1
C2—C3—H3A108.9C7'—C6'—H6'2110.1
S3—C3—H3A108.9O1—C6'—H6'2110.1
C2—C3—H3B108.9H6'1—C6'—H6'2108.4
S3—C3—H3B108.9O2—C7'—C6'113.0 (9)
H3A—C3—H3B107.7O2—C7'—C7'i28.7 (6)
C5—C4—S3115.3 (2)C6'—C7'—C7'i125.7 (13)
C5—C4—H4A108.4O2—C7'—H7'1109.0
S3—C4—H4A108.4C6'—C7'—H7'1109.0
C5—C4—H4B108.4C7'i—C7'—H7'1118.7
S3—C4—H4B108.4O2—C7'—H7'2109.0
H4A—C4—H4B107.5C6'—C7'—H7'2109.0
O1—C5—C4108.8 (2)C7'i—C7'—H7'280.4
O1—C5—H5A109.9H7'1—C7'—H7'2107.8
C4—C5—H5A109.9

Symmetry codes: (i) −x, y, −z+1/2.

Footnotes

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NK2030).

References

  • Chen, T., Liu, W. J., Cong, Z. Q. & Yin, B. Z. (2005). Chin. J. Org. Chem.25, 570–575.
  • Higashi, T. (1995). ABSCOR Rigaku Corporation, Tokyo, Japan.
  • Hou, R.-B., Li, B., Che, T., Yin, B.-Z. & Wu, L.-X. (2009). Acta Cryst. E65, o2538. [PMC free article] [PubMed]
  • Moore, A. J., Goldenberg, L. M., Bryce, M. R. & Petty, M. (2000). J. Org. Chem.65, 8269–8276. [PubMed]
  • Rigaku (1998). RAPID-AUTO Rigaku Corporation, Tokyo, Japan.
  • Rigaku/MSC (2002). CrystalStructure Rigaku/MSC Inc., The Woodlands, Texas, USA.
  • Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [PubMed]
  • Spek, A. L. (2009). Acta Cryst. D65, 148–155. [PMC free article] [PubMed]

Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography